精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的离心率,圆与直线相切,为坐标原点

1求椭圆的方程;

2过点任作一直线交椭圆两点,记,若在线段上取一点,使得,试判断当直线运动时,点是否在某一定直一上运动?若是,请求出该定直线的方程;若不是,请说明理由

【答案】12在定直线

【解析】

试题分析:1由离心率,及圆心与直线相切,可得关于的两个关系式,解得值,可得椭圆的方程;2由题可设直线方程与椭圆方程联立,消去利用根与系数的关系和向量的坐标运算,可得值,设出点坐标, ,可得点横坐标为

试题解析:

1,又

解得,所以椭圆的方程为

2直线的斜率必存在,设其直线方程为

并设,联立方程

消去,则

,得,故

设点的坐标为,则由,得

解得

,从而

故点在定直线

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项为和Sn,点(n)在直线yx上.数列{bn}满足bn+2-2bn+1bn=0(nN*),且b3=11,前9项和为153.

(1)求数列{an},{bn}的通项公式;

(2)求数列的前项和

(3)设nN*fn)=问是否存在mN*,使得fm+15)=5fm)成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有除颜色外其余均相同的12个小球,从中随机取出1个球,取出红球的概率为,取出黑球的概率为,取出白球的概率为,取出绿球的概率为.求:

(1)取出的1个球是红球或黑球的概率;

(2)取出的1个球是红球或黑球或白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆台的底面内的任意一条直径与另一个底面的位置关系是 (  )

A.平行B.相交C.在平面内D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人练习罚球,每人练习6组,每组罚球20个,命中个数茎叶图如下:

(1)求甲命中个数的中位数和乙命中个数的众数;

(2)通过计算,比较甲乙两人的罚球水平.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形的边长为1,如图所示:

1在正方形内任取一点求事件的概率;

2用芝麻颗粒将正方形均匀铺满,经清点,发现芝麻一共56粒,有44粒落在扇形请据此估计圆周率的近似值精确到0.001

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点为,离心率为,点在椭圆上,在线段上,且的周长等于

1求椭圆的标准方程;

2过圆上任意一点作椭圆的两条切线与圆交于点,求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1求函数的单调区间;

2时,若对任意的恒成立,求实数的值;

3求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果y=fx的定义域为R,对于定义域内的任意x,存在实数a使得fx+a=fx成立,则称此函数具有Pa性质给出下列命题:

函数y=sinx具有Pa性质

若奇函数y=fx具有P2性质,且f1=1,则f2015=1;

若函数y=fx具有P4性质,图象关于点1,0成中心对称,且在1,0上单调递减,则y=fx2,1上单调递减,在1,2上单调递增;

若不恒为零的函数y=fx同时具有P0性质P3性质,函数y=fx是周期函数

其中正确的是 写出所有正确命题的编号).

查看答案和解析>>

同步练习册答案