精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2cosx( sinx+cosx)+m,(x∈R,m∈R).
(1)求f(x)的最小正周期;
(2)若f(x)在区间[0, ]上的最大值是6,求f(x)在区间[0, ]上的最小值.

【答案】
(1)解:函数f(x)=2cosx( sinx+cosx)+m

= sin2x+cos2x+1+m=2sin(2x+ )+1+m,

故函数f(x)的最小正周期为π


(2)解:在区间[0, ]上,2x+ ∈[ ],

故当2x+ = 时,f(x)取得最大值为2+1+m=6,∴m=3.

故当2x+ = 时,f(x)取得最小值为﹣1+1+m=3


【解析】(1)利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性求得函数f(x)的最小正周期.(2)由条件利用正弦函数的定义域和值域,求得m的值,从而求得f(x)在区间[0, ]上的最小值.
【考点精析】关于本题考查的三角函数的最值,需要了解函数,当时,取得最小值为;当时,取得最大值为,则才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥A﹣BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥面ABC,BE∥CD,F为AD的中点.
(Ⅰ)求证:EF∥面ABC;
(Ⅱ)求证:平面ADE⊥平面ACD;
(Ⅲ)求四棱锥A﹣BCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是城市慢行系统的一种模式创新,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数h(x),其中 x是新样式单车的月产量(单位:件),利润=总收益﹣总成本.
(1)试将自行车厂的利润y元表示为月产量x的函数;
(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,利用定义证明:
(1)f(x)为奇函数;
(2)f(x)在 ,+∞)上是增加的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,0), =(m,1),且 的夹角为
(1)求| ﹣2 |;
(2)若( )与 垂直,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知sinα= ,且α∈( ,π).
(1)求tan(α+ )的值;
(2)若β∈(0, ),且cos(α﹣β)= ,求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆O:x2+y2=1,O1:(x﹣4)2+y2=4,动点P在直线x+ y+b=0上,过P分别作圆O,O1的切线,切点分别为A,B,若满足PB=2PA的点P有且只有两个,则实数b的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x+1)的定义域为[﹣2,3],则f(3﹣2x)的定义域为(
A.[﹣5,5]
B.[﹣1,9]
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将直线2x﹣y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x﹣4y=0相切,则实数λ的值为(
A.﹣3或7
B.﹣2或8
C.0或10
D.1或11

查看答案和解析>>

同步练习册答案