精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\sqrt{\frac{x+1}{x-2}}$的定义域为集合A,函数g(x)=$\sqrt{{x^2}-(2a+1)x+{a^2}+a}$的定义域为集合B.
(1)求集合A、B;
(2)若A∩B=A,求实数a的取值范围.

分析 (1)分别解得集合A,B即可;
(2)根据A∩B=A,得出A⊆B,借助数轴解得即可.

解答 解:(1)$\frac{x+1}{x-2}≥0⇒x>2或x≤-1$,
x2-(2a+1)x+a2+a≥0⇒x≥a+1或x≤a
∴A=(-∞,-1]∪(2,+∞),B=(-∞,a]∪[a+1,+∞)…(6分)
(2)$A∩B=A?A⊆B⇒\left\{\begin{array}{l}a≥-1\\ a+1≤2\end{array}\right.⇒-1≤a≤1$…(12分)

点评 本题主要考查集合的自交并的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知全集U=R,设集合A={x|-1≤x≤2},B={x|0<x<3}.求
(1)A∩B,A∪B;
(2)∁UA,∁UB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知x=log32,求33x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为$\sqrt{2}$,且过点(4,-$\sqrt{10}$),点M(3,m)在双曲线上.
(1)求双曲线方程;
(2)求证:MF1⊥MF2
(3)求△F1MF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在长方体ABCD-A1B1C1D1中,已知AB=BC=2,BB1=3,连结BC1,过B1作B1E⊥BC1交CC1于点E.
(1)求证:AC1⊥平面B1D1E;
(2)求三棱锥C1-B1D1E的体积;
(3)求C1到面B1D1E的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{4}$=1,直线l过原点,
(1)若直线l与C有两个不同的公共点,求实数k的取值范围;
(2)当k=$\frac{1}{2}$时,直线l截双曲线C的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.曲线C1的参数方程为:$\left\{\begin{array}{l}{x=1+tcos\frac{π}{4}}\\{y=5+tsin\frac{π}{4}}\end{array}\right.$(t为参数),曲线C2的参数方程为:$\left\{\begin{array}{l}{x=cosφ}\\{y=\sqrt{3}sinφ}\end{array}\right.$(φ为参数).
(1)求曲线C2的普通方程,若以坐标原点为极点,x轴的正半轴为极轴建立坐标系,求曲线C1的极坐标系方程;
(2)若点P为曲线C2上任意一点,求点P到曲线C1距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不同直线m,n和不同平面α,β,给出下列命题,其中真命题有(  )
①$\left.{\begin{array}{l}{α∥β}\\{m?α}\end{array}}\right\}⇒m∥β$;②$\left.{\begin{array}{l}{m∥n}\\{m∥β}\end{array}}\right\}⇒n∥β$;③$\left.{\begin{array}{l}{n?β}\\{m?α}\end{array}}\right\}⇒m,n异面$;④$\left.{\begin{array}{l}{α⊥β}\\{m∥α}\end{array}}\right\}⇒m⊥β$.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知二次函数f(x)=x2+(2a-1)x+1-2a.
(1)若f(x)只有一个零点,求实数a的值;
(2)若f(x)在区间$(-1,0)及(0,\frac{1}{2})$内各有一个零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案