精英家教网 > 高中数学 > 题目详情
7.(1)求函数f(x)=$\left\{\begin{array}{l}{x+2,-2≤0<0}\\{2cosx(0≤x≤\frac{π}{2})}\end{array}\right.$的图象与x轴所围成的封闭图形的面积.
(2)求曲线y=x2,y=x及y=2x所围成的平面图形的面积.

分析 利用定积分求曲边图形的面积解决该问题.关键要弄清楚积分的区间与被积函数,然后通过微积分基本定理求出所求的面积.

解答 解:(1)${∫}_{-2}^{0}$(x+2)dx+${∫}_{0}^{\frac{π}{2}}$2cosxdx=($\frac{1}{2}$x2+2x)|${\;}_{-2}^{0}$+2sinx${\;}_{0}^{\frac{π}{2}}$=0-($\frac{1}{2}×$4-2×2)+2=4,
(2)曲线y=x2,y=x及y=2x所围成的平面图形的面积如图所示:
由$\left\{\begin{array}{l}{y={x}^{2}}\\{y=x}\end{array}\right.$,得A(1,1),又由$\left\{\begin{array}{l}{y={x}^{2}}\\{y=2x}\end{array}\right.$,得B(2,4),
所以S阴影=${∫}_{0}^{1}$(2x-x)dx+${∫}_{1}^{2}$(2x-x2)dx=$\frac{1}{2}$x2|${\;}_{0}^{1}$+(x2-$\frac{1}{3}$x3)|${\;}_{1}^{2}$=$\frac{7}{6}$.
所求平面图形面积为$\frac{7}{6}$.

点评 本题考查定积分在求曲边图形面积中的应用,考查积分与导数之间的关系,求解时要确定出被积函数的原函数.考查学生的运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.集合A={x|2x2+4ax+1=0}中只有一个元素,则a的值是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.±$\frac{\sqrt{2}}{2}$D.2或$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算下列各式:
(1)log336-log34+log525;
(2)($\frac{16}{81}$)${\;}^{-\frac{1}{4}}$+8${\;}^{\frac{2}{3}}$+$\sqrt{(-2)^{2}}$;
(3)lg$\sqrt{10}$+lne2-log28.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\frac{t+sinx}{t+cosx}({|t|>1})$的最大值和最小值分别是M,m,则M•m为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.与向量$\overrightarrow d=(12,5)$平行的单位向量为(  )
A.$(\frac{12}{13},5)$B.$(-\frac{12}{13},-\frac{5}{13})$
C.$(\frac{12}{13},\frac{5}{13})$或$(-\frac{12}{13},-\frac{5}{13})$D.$(±\frac{12}{13},±\frac{5}{13})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知|a-b|=|a|+|b|,且|a|=5,|b|=3,求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=60°,平面PED⊥平面PAB,PD⊥AD,点E为AB中点.
(1)求证:PD⊥AB;
(2)求证:PD⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知二次函数f(x)=ax2+bx+c(a,b为常数,且a≠0),满足条件f(1+x)-f(x)=-2x+1,f(x)=4x有等根,g(x)是R上的奇函数,当x>0时,g(x)=f(x).
(1)求f(x)的解析式;
(2)求g(x)的解析式;
(3)求g(x)在区间[-1,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.化简求值:
(1)(-3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(0.002)${\;}^{-\frac{1}{2}}$-10($\sqrt{5}$-2)-1+($\sqrt{2}$$-\sqrt{3}$)0
 (2)(a-2b-3)•(-4a-1b)÷(12a-4b-2c)
(3)2$\root{3}{a}$÷4$\root{6}{a•b}$×3$\sqrt{{b}^{3}}$.

查看答案和解析>>

同步练习册答案