精英家教网 > 高中数学 > 题目详情
19.在△ABC中,三边的长AB=6,BC=4,AC=5,则$\overrightarrow{AB}$•$\overrightarrow{BC}$的值为(  )
A.$\frac{27}{2}$B.$\frac{45}{2}$C.-$\frac{27}{2}$D.-$\frac{45}{2}$

分析 由余弦定理即可得出cosB,从而得到$cos<\overrightarrow{AB},\overrightarrow{BC}>$,这样即可由数量积的计算公式求出$\overrightarrow{AB}•\overrightarrow{BC}$.

解答 解:如图,

在△ABC中由余弦定理:cosB=$\frac{36+16-25}{2×6×4}=\frac{9}{16}$;
∴$cos<\overrightarrow{AB},\overrightarrow{BC}>=-\frac{9}{16}$;
∴$\overrightarrow{AB}•\overrightarrow{BC}=|\overrightarrow{AB}||\overrightarrow{BC}|cos<\overrightarrow{AB},\overrightarrow{BC}>$=$6×4×(-\frac{9}{16})=-\frac{27}{2}$.
故选C.

点评 考查余弦定理,向量夹角的概念,以及向量数量积的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.用反证法证明命题:“若a1+a2+a3+a4>100,则a1,a2,a3,a4中至少有一个数大于25.”时,假设的内容应为(  )
A.a1,a2,a3,a4都大于25B.a1,a2,a3,a4都小于25
C.a1,a2,a3,a4都不大于25D.a1,a2,a3,a4都不小于25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知直线过点P(1,2),其参数方程为$\left\{{\begin{array}{l}{x=1-t}\\{y=2+t}\end{array}}\right.$(t是参数),若直线l与直线2x+y-2=0交于点Q,则|PQ|等于2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知-1<a<2,0<b<5,a+b的取值范围是区间A,a-b的取值范围是区间B,则A∩B=(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在矩形ABCD中,AB=2BC,M、N分别是AB和CD的中点,在以A、B、C、D、M、N为起点和终点的所有向量中,相等的非零向量共有24对.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式(x2-1)(x+1)≤0的解集为(  )
A.(-∞,-1]B.(-∞,-1)C.(-∞,1)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求y=$\sqrt{1-x}$+$\sqrt{x}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知抛物线C:y2=4x上一点P,若以P为圆心,|PO|为半径作圆与抛物线的准线l交于不同的两点M,N,设准线l与x轴的交点为A,则$\frac{1}{|AM|}$+$\frac{1}{|AN|}$的取值范围是(0,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数z满足方程$\frac{z+i}{z}$=i(i为虚数单位),则$\overline{z}$=(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}$iC.-$\frac{1}{2}$+$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

同步练习册答案