A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | $\frac{3}{2}$ |
分析 由题意得到${∫}_{-1}^{\frac{π}{2}}$f(x)dx=${∫}_{-1}^{0}$(x+1)dx+${∫}_{0}^{\frac{π}{2}}$cosxdx,解得即可.
解答 解:f(x)=$\left\{\begin{array}{l}{x+1,(-1≤x≤0)}\\{cosx,(0<x≤\frac{π}{2})}\end{array}\right.$,
则${∫}_{-1}^{\frac{π}{2}}$f(x)dx=${∫}_{-1}^{0}$(x+1)dx+${∫}_{0}^{\frac{π}{2}}$cosxdx=($\frac{1}{2}$x2+x)|${\;}_{-1}^{0}$+sinx|${\;}_{0}^{\frac{π}{2}}$=($\frac{1}{2}$-1)+sin$\frac{π}{2}$-sin0=-$\frac{1}{2}$+1=$\frac{1}{2}$,
故选:A.
点评 本题考查了定积分的计算,关键是求出原函数,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com