精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\left\{\begin{array}{l}{x+1,(-1≤x≤0)}\\{cosx,(0<x≤\frac{π}{2})}\end{array}\right.$,则${∫}_{-1}^{\frac{π}{2}}$f(x)dx=(  )
A.$\frac{1}{2}$B.1C.2D.$\frac{3}{2}$

分析 由题意得到${∫}_{-1}^{\frac{π}{2}}$f(x)dx=${∫}_{-1}^{0}$(x+1)dx+${∫}_{0}^{\frac{π}{2}}$cosxdx,解得即可.

解答 解:f(x)=$\left\{\begin{array}{l}{x+1,(-1≤x≤0)}\\{cosx,(0<x≤\frac{π}{2})}\end{array}\right.$,
则${∫}_{-1}^{\frac{π}{2}}$f(x)dx=${∫}_{-1}^{0}$(x+1)dx+${∫}_{0}^{\frac{π}{2}}$cosxdx=($\frac{1}{2}$x2+x)|${\;}_{-1}^{0}$+sinx|${\;}_{0}^{\frac{π}{2}}$=($\frac{1}{2}$-1)+sin$\frac{π}{2}$-sin0=-$\frac{1}{2}$+1=$\frac{1}{2}$,
故选:A.

点评 本题考查了定积分的计算,关键是求出原函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知正项数列{an}中,其前n项和为Sn,且${a_n}=2\sqrt{S_n}-1$.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$,Tn=b1+b2+b3+…+bn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某地一天的温度(单位:℃)随时间t(单位:小时)的变化近似满足函数关系:f(t)=24-8sin(ωt+$\frac{π}{3}$),t∈[0,24),ω∈(0,$\frac{π}{8}$),且早上8时的温度为24℃.
(1)求函数的解析式,并判断这一天的最高温度是多少?出现在何时?
(2)当地有一通宵营业的超市,为了节省开支,规定在环境温度超过28℃时,开启中央空调降温,否则关闭中央空调,问中央空调应在何时开启?何时关闭?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在Rt△ABC中,∠C=90°,B E平分∠A BC交 AC于点E,点D在AB上,DE⊥EB,且${A}D=2\sqrt{3}$,AE=6.
(I)判断直线 AC与△BDE的外接圆的位置关系并说明理由;
(II)求EC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A={x|0≤x≤4},B={y|0≤y≤2},从A到B的对应法则分别是:
(1)$f:x→y=\frac{1}{2}x$; (2)f:x→y=x-2;
(3)$f:x→y=\sqrt{x}$; (4)f:x→y=|x-2|.
其中能够成一 一映射的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx-a(x-1),(a∈R).
(1)讨论函数f(x)的单调性;
(2)当x≥1时,e${\;}^{a(x-\frac{1}{x})}$≥x,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|3x-a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|-$\frac{2}{3}$≤x≤$\frac{4}{3}$},求实数a的值.
(Ⅱ)在(Ⅰ)的条件下,令g(x)=f(x)+f(x+5),若不等式g(x)≥|m-1|对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a1=a2=1,且an+2=$\frac{1}{{a}_{n+1}}$+an(n=1,2,3…)求a2004

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示,则其表面积为(  )
A.38+πB.38+2πC.40+πD.40+2π

查看答案和解析>>

同步练习册答案