精英家教网 > 高中数学 > 题目详情
6.中央电视台第一套节目午间新闻的播出时间是每天中午12:00到12:30,在某星期天中午的午间新闻中将随机安排播出时长5分钟的有关电信诈骗的新闻报道.若小张于当天12:20打开电视,则他能收看到这条新闻的完整报道的概率是(  )
A.$\frac{2}{5}$B.$\frac{1}{3}$C.$\frac{1}{5}$D.$\frac{1}{6}$

分析 他能收看到这条新闻的完整报道,播出时间是12:20到12:25,长度为5;12:00到12:30,长度为30,即可求出他能收看到这条新闻的完整报道的概率,

解答 解:他能收看到这条新闻的完整报道,播出时间是12:20到12:25,长度为5;
12:00到12:30,长度为30,
∴他能收看到这条新闻的完整报道的概率是$\frac{5}{30}$=$\frac{1}{6}$,
故选D.

点评 本题考查几何概型,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.曲线$y={x^3}-\sqrt{3}x+2$上的任意一点P处切线的倾斜角的取值范围是(  )
A.$[{0,\frac{π}{2}})∪[{\frac{2π}{3},π})$B.$[{\frac{2π}{3},π})$C.$[{0,\frac{π}{2}})∪[{\frac{5π}{6},π})$D.$[{\frac{5π}{6},π})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=-x2+2x,g(x)=|f(x)|.
(1)求f(x)在区间[-1,2]上的最小值;
(2)作出函数g(x)的图象,并根据图象写出其单调减区间;
(3)若函数y=g(x)-log2m至少有三个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线y=kx+1-k与椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$的位置关系为(  )
A.相交B.相切C.相离D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.一个多面体的直观图(图1)及三视图(图2)如图所示,其中M、N分别是AF、BC的中点,
(1)求证:MN∥平面CDEF;
(2)求平面MNF与平面CDEF所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数y=x2-mx+1在区间[1,2]上单调递增,则实数m的取值范围是(  )
A.(-∞,2]B.(-∞,2)C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.点P是椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$上的一点,F1和F2是焦点,且$∠{F_1}P{F_2}={60^0}$,则△F1PF2的周长为6,△F1PF2的面积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=\frac{lnx}{x+1}-\frac{{2{f^'}(1)}}{x}$.
(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)证明:当0<x<1时,(x-1)f(x)<lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知x+y=8,xy=9且x<y,求$\frac{{{x^{\frac{1}{2}}}+{y^{\frac{1}{2}}}}}{{{x^{\frac{1}{2}}}-{y^{\frac{1}{2}}}}}$.

查看答案和解析>>

同步练习册答案