精英家教网 > 高中数学 > 题目详情

【题目】 已知函数f(x)=ax3+bx2的图象经过点M(1,4),曲线在点M处的切线恰好与直线x+9y﹣3=0垂直.

(1)求实数a、b的值

(2)若函数f(x)在区间[m,m+1]上单调递增,求m的取值范围.

【答案】1;(2

【解析】

(1)∵f(x)ax3bx2的图象经过点M(1,4)

ab4.①

f′(x)3ax22bx,则f′(1)3a2b

由条件f′(1)·()=-1,即3a2b9

①②式解得a1b3.

(2)f(x)x33x2f′(x)3x26x,令f′(x)3x26x≥0x≥0x2

f(x)的单调递增区间为(,-2][0,+∞)由条件知m≥0m1≤2

m≥0m3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.
(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两条平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线,和圆相切,则的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2(a+2)x+a2 , g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的较大值,min{p,q}表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=( )
A.16
B.﹣16
C.﹣16a2﹣2a﹣16
D.16a2+2a﹣16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥P-ABC的三条侧棱两两互相垂直,且AB=BC=AC=2,则此三棱锥外接球的表面积为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(1)求张同学至少取到1道乙类题的概率;
(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是 ,答对每道乙类题的概率都是 ,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)已知过原点的动直线与圆 相交于不同的两点

1)求圆的圆心坐标;

2)求线段的中点的轨迹的方程;

3)是否存在实数,使得直线 与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形所在的半平面和直角梯形所在的半平面成的二面角,.

(Ⅰ)求证:平面平面

(Ⅱ)试问在线段上是否存在一点,使锐二面角的余弦值为.若存在,请求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案