精英家教网 > 高中数学 > 题目详情
已知关于x的一元二次方程2x2+px+15=0有一个零点是-3,则另一个零点是
-
5
2
-
5
2
分析:先根据一元二次方程2x2+px+15=0有一个零点是-3求出p的值,得到一元二次方程,然后解方程即可得到答案.
解答:解:∵一元二次方程2x2+px+15=0有一个零点是-3
∴2×(-3)2+p×(-3)+15=0∴p=11
一元二次方程为:2x2+11x+15=0
解方程可得到x=-3,x=-
5
2

故答案为:-
5
2
点评:本题主要考查函数的零点和方程根的关系.函数的零点、方程的根以及函数的图象与x轴的交点的关系是高考考查的重点内容,要充分理解其等价关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的一元二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域
x+y-8≤0
x>0
y>0
内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在一个红绿灯路口,红灯、黄灯和绿灯的时间分别为30秒、5秒和40秒.当你到达路口时,求不是红灯的概率.
(2)已知关于x的一元二次函数f(x)=ax2-4bx+1.设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次函数f(x)=ax2-4bx+1.
(Ⅰ)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[|m+n|2上是增函数的概率;
(Ⅱ)设点(
1
2
|m+n|min=
2
2
)是区域
x+y-8≤0
x>0
y>0
内的随机点,求MD上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次不等式ax2+bx+c>0的解集为(-2,3),则关于x的不等式cx+b
x
+a<0的解集为
[0,
1
9
[0,
1
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•蓝山县模拟)已知关于x的一元二次不等式ax2+bx+c≥0在实数集上恒成立,且a<b,则T=
a+b+cb-a
的最小值为
3
3

查看答案和解析>>

同步练习册答案