精英家教网 > 高中数学 > 题目详情
14.拉萨市某高中为了了解学校食堂的服务质量情况,对在校就餐的1400名学生按5%比例进行问卷调查,把学生对食堂的“服务满意度”与“价格满意度”都分为五个等级:1级(很不满意);2级(不满意);3级(一般);4级(满意);5级(很满意),其统计结果如表所示(服务满意度为x,价格满意度为y).

 
y
人数
x
价格满意度
12345




111220
221341
337884
414641
501231
(I)作出“价格满意度”的频率分布直方图;
(II)为改进食堂服务质量,现从x<3且y<3的五人中抽取两人征求意见,求至少有一人的“服务满意度”为1的概率.

分析 (Ⅰ)利用统计结果能作出“价格满意度”的频率分布直方图.
(Ⅱ)x<3且y<3的五人中,有2人“服务满意度”为1,有3人“服务满意度”为2,从中抽取两人,基本事件总数n=${C}_{5}^{2}=10$,至少有一人的“服务满意度”为1的对立事件是抽取的2人的“服务满意度”都为2,由此利用对立事件概率计算公式能求出至少有一人的“服务满意度”为1的概率.

解答 解:(Ⅰ)“价格满意度”的频率分布直方图如下图所示:

(Ⅱ)x<3且y<3的五人中,
有2人“服务满意度”为1,有3人“服务满意度”为2,
从中抽取两人,基本事件总数n=${C}_{5}^{2}=10$,
至少有一人的“服务满意度”为1的对立事件是抽取的2人的“服务满意度”都为2,
∴至少有一人的“服务满意度”为1的概率:
p=1-$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}$=$\frac{7}{10}$.

点评 本题考查频率分布直方图的作法,考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图,四边形OABC是边长为1的正方形,OD=3,点P为△BCD内(含边界)的动点,则|$\overrightarrow{OA}$+$\overrightarrow{OP}$|的取值范围为(  )
A.[$\frac{2\sqrt{10}}{5}$,5]B.[$\sqrt{2}$,4]C.[$\sqrt{2}$,$\sqrt{5}$]D.[$\frac{2\sqrt{10}}{5}$,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2.
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$的值;
(2)求|$\overrightarrow{a}$+$\overrightarrow{b}$|的值.
(3)求$\overrightarrow{a}$在$\overrightarrow{b}$上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.5名学生站成一排照相,甲、乙之间必须间隔一人的排法共(  )
A.12种B.18种C.24种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)(x∈R)满足f(-x)=8-f(4+x),函数g(x)=$\frac{4x+3}{x-2}$,若函数f(x)与g(x)的图象共有168个交点,记作Pi(xi,yi)(i=1,2,…,168),则(x1+y1)+(x2+y2)+…+(x168+y168)的值为(  )
A.2018B.2017C.2016D.1008

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的一个焦点坐标为(2$\sqrt{3}$,0)则实数a的值为(  )
A.8B.2$\sqrt{2}$C.16D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(Ⅰ)求平行于直线x-2y+1=0,且与它的距离为2$\sqrt{5}$的直线方程;
(Ⅱ)求经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:2x+3y+1=0垂直的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校开展“读好书,好读书”活动,要求本学期每人至少读一本课外书,该校高一共有100名学生,他们本学期读课外书的本数统计如图所示.
( I)求高一学生读课外书的人均本数;
(Ⅱ)从高一学生中任意选两名学生,求他们读课外书的本数恰好相等的概率;
(Ⅲ)从高一学生中任选两名学生,用ζ表示这两人读课外书的本数之差的绝对值,求随机变量ζ的分布列及数学期望Eζ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行程序框图,如果输入的N的值为7,那么输出的p的值是(  )
A.120B.720C.1440D.5040

查看答案和解析>>

同步练习册答案