【题目】在平面直角坐标系中,点是圆:上的动点,定点,线段的垂直平分线交于,记点的轨迹为.
(Ⅰ)求轨迹的方程;
(Ⅱ)若动直线:与轨迹交于不同的两点、,点在轨迹上,且四边形为平行四边形.证明:四边形的面积为定值.
科目:高中数学 来源: 题型:
【题目】一个圆经过点,且和直线相切.
(1)求动圆圆心的轨迹的方程;
(2)已知点,设不垂直于轴的直线与轨迹交于不同的两点,若轴是的角平分线,证明直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,为左、右焦点,直线过交椭圆于,两点.
(1)若垂直于轴时,求;
(2)当时,在轴上方时,求,的坐标;
(3)若直线交轴于,直线交轴于,是否存在直线,使,若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了在夏季降温和冬季取暖时减少能源消耗,业主决定对房屋的屋顶和外墙喷涂某种新型隔热材料,该材料有效使用年限为20年.已知房屋外表喷一层这种隔热材料的费用为每毫米厚6万元,且每年的能源消耗费用(万元)与隔热层厚度(毫米)满足关系:.设为隔热层建造费用与年的能源消耗费用之和.
(1)请解释的实际意义,并求的表达式;
(2)当隔热层喷涂厚度为多少毫米时,业主所付的总费用最少?并求此时与不建隔热层相比较,业主可节省多少钱?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com