精英家教网 > 高中数学 > 题目详情
10.若集合A={y|y=2x},B={x|x2-2x-3>0,x∈R},那么A∩B=(  )
A.(0,3]B.[-1,3]C.(3,+∞)D.(0,-1)∪(3,+∞)

分析 根据指数函数的性质求出函数的值域化简集合A,求解一元二次不等式化简集合B,然后直接利用交集运算求解.

解答 解:集合A={y|y=2x}=(0,+∞),B={x|x2-2x-3>0,x∈R}=(-∞,-1)∪(3,+∞),
∴A∩B=(3,+∞)
故选C.

点评 本题考查了交集及其运算,考查了不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,BA⊥AC,ED⊥DG,EF∥DG,且AC=1,AB=ED=EF=2,AD=DG=4.
(1)求证:BE⊥平面DEFG;
(2)求证:BF∥平面ACGD;
(3)求三棱锥A-FBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某外语学校英语班有A1、A2两位同学,日语班有B1、B2、B3、B4四位同学,俄语班有C1、C2两位同学共8人报名奥运会志愿者,现从中选出懂英语、日语、俄语的志愿者各1人,组成一个小组.
(1)写出一切可能的结果组成的基本事件空间并求出B4被选中的概率;
(2)求A1和C1不全被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数2-3i(i为虚数单位)的虚部是(  )
A.-2B.2C.-3iD.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.二次函数y=kx2(x>0)的图象在点(an,an2)处的切线与x轴交点的横坐标为an+1,n为正整数,a1=$\frac{1}{3}$,若数列{an}的前n项和为Sn,则S5=$\frac{31}{48}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)满足f(x)+1=$\frac{1}{f(x+1)}$,当x∈[0,1]时,f(x)=x,若在区间(-1,1]上方程f(x)-mx-m=0有两个不同的实根,则实数m的取值范围是(  )
A.(0,$\frac{1}{2}$]B.(0,$\frac{1}{2}$)C.(0,$\frac{1}{3}$]D.(0,$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB,点E是棱PB的中点.求证:AE⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.有以下四个命题,其中真命题的个数为(  )
①△ABC中,“A>B”是“sinA>sinB”的充要条件;
②若命题p:?x∈R,sinx≤1,则¬p:?x∈R,sinx<1;
③函数y=3sin(2x-$\frac{π}{6}$)+2的单调递减区间是[$\frac{π}{3}$+2kπ,$\frac{5}{6}$π+2kπ](k∈z);
④若函数f(x)=x2+2x+2a与g(x)=|x-1|+|x+a|有相同的最小值,则$\int_1^a{f(x)}dx$=$\frac{28}{3}$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若cosα=-$\frac{3}{5}$,且α∈(π,$\frac{3π}{2}$),则tanα=(  )
A.-$\frac{4}{3}$B.$\frac{4}{3}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

同步练习册答案