精英家教网 > 高中数学 > 题目详情

直四棱柱中,底面为菱形,且延长线上的一点,.设.

(Ⅰ)求二面角的大小;
(Ⅱ)在上是否存在一点,使?若存在,求的值;不存在,说明理由.

(1);(2)存在点使此时

解析试题分析:本题主要以直三棱柱为几何背景考查线线垂直、线面垂直、线面平行和二面角的求法,可以运用空间向量法求解,突出考查空间想象能力和计算能力.第一问,第一问,通过对题目的分析建立空间直角坐标系,得到点和向量的坐标,先由线面垂直得出平面的法向量为,再利用,求出平面的法向量,最后利用夹角公式求出夹角余弦值,通过观察判断确定二面角为锐角;第二问,先假设存在,利用共线向量,得到的关系,从而得到的坐标,下面求的坐标,利用第一问中的的坐标计算的坐标,如果平面,则与平面的法向量垂直,所以,利用这个方程解题,如果有解,则存点,若无解,则不存在点.
试题解析:(Ⅰ)设交于,如图所示建立空间直角坐标系


平面
          2分
设平面的法向量为 
则由   令
平面的一个法向量为
又平面的法向量为
∴二面角大小为           6分

(Ⅱ)设
   10分

存在点使此时         12分
考点:1.空间向量法;2.线面垂直;3.夹角公式;4.向量垂直的充要条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知在四棱锥中, 底面四边形是直角梯形, ,,.

(1)求证:
(2)求直线与底面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,平面分别是的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平行六面体ABCD—A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD上的射影是O。

(Ⅰ)求证:平面O1DC⊥平面ABCD;
(Ⅱ)若∠A1AB=60°,求平面BAA1与平面CAA1的夹角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,°,平面平面分别为中点.

(1)求证:∥平面
(2)求证:
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在长方体中,, E、 分别为的中点.

(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC, D是PB上一点,且CD⊥平面PAB.

(1)求证:AB⊥平面PCB;
(2)求异面直线AP与BC所成角的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,是棱上的一点,的延长线与的延长线的交点,且∥平面

(1)求证:
(2)求二面角的平面角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.

(1)求异面直线B1C1与AC所成角的大小;
(2)若该直三棱柱ABC-A1B1C1的体积为,求点A到平面A1BC的距离.

查看答案和解析>>

同步练习册答案