精英家教网 > 高中数学 > 题目详情
已知函数f(x)=,g(x)=x2-3ax+2a2(a<0),若不存在实数x使得f(x)>1和g(x)<0同时成立,试求a的范围.

解析:由f(x)>1,得>1,化简整理得<0.

解得-2<x<-1或2<x<3,即f(x)>1的解集为A={x|-2<x<-1或2<x<3}.

由g(x)<0得x2-3ax+2a2<0,即(x-a)(x-2a)<0(a<0).

则g(x)<0的解集为B={x|2a<x<a,a<0}.

根据题意,有A∩B=.

因此,a≤-2或-1≤2a<0.

故a的范围是{a|a≤-2或-≤a<0}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案