精英家教网 > 高中数学 > 题目详情
12.已知等比数列{an}的前n项和${S_n}={2^n}-a$,则$a_1^2+a_2^2+…+a_n^2$=(  )
A.(2n-1)2B.$\frac{1}{3}({2^n}-1)$C.4n-1D.$\frac{1}{3}({4^n}-1)$

分析 利用递推关系与等比数列的定义可得a,an,再利用等比数列的求和公式即可得出.

解答 解:∵${S_n}={2^n}-a$,∴a1=2-a,a1+a2=4-a,a1+a2+a3=8-a,
解得a1=2-a,a2=2,a3=4,
∵数列{an}是等比数列,∴22=4(2-a),解得a=1.
∴公比q=2,an=2n-1,${a}_{n}^{2}$=22n-2=4n-1
则$a_1^2+a_2^2+…+a_n^2$=$\frac{{4}^{n}-1}{4-1}$=$\frac{1}{3}({4}^{n}-1)$.
故选:D.

点评 本题考查了等比数列的定义通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.以点(5,4)为圆心且与x轴相切的圆的方程是(  )
A.(x-5)2+(y-4)2=16B.(x+5)2+(y-4)2=16C.(x-5)2+(y-4)2=25D.(x+5)2+(y-4)2=25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.四棱锥P-ABCD中,底面ABCD为直角梯形,∠BAD=90°,AD∥BC,AB=BC=2,AD=4,PA⊥底面ABCD,PD与底面ABCD成30°角,E是PD的中点.
(1)点H在AC上且EH⊥AC,求$\overrightarrow{EH}$的坐标;
(2)求AE与平面PCD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-m|(m>0),g(x)=2f(x)-f(x+m),g(x)的最小值为-1.
(Ⅰ)求m的值;
(Ⅱ)若|a|<m,|b|<m,且a≠0.求证:f(ab)>|a|f($\frac{b}{a}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.扔一枚硬币三次,则
(1)已知有一次是正面朝上,求另外两次反面朝上的概率
(2)已知有两次正面朝上,求另一次反面朝上的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-(m-2)x-2m
(1)当m=4且x∈[2,3]时,求函数f(x)的值域;
(2)若m∈[1,3]时,f(x)≤0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)${(\frac{2}{3})^0}+{2^{-2}}×{(\frac{16}{9})^{\frac{1}{2}}}+(lg8+lg125)$;
(2)已知a+a-1=5,求a2+a-2和${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=f'(2){x^3}+\frac{1}{x}$,则f(2)=(  )
A.$-\frac{1}{4}$B.$\frac{1}{44}$C.$\frac{15}{22}$D.$\frac{1}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}满足a1=33,an+1-an=2n,则$\frac{2{a}_{n}}{n}$的最小值为21.

查看答案和解析>>

同步练习册答案