精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)的解析式;
(3)若x∈A,f(x)∈[﹣7,3],求区间A.

【答案】
(1)解:∵f(x)是奇函数,

∴f(3)+f(﹣1)=f(3)﹣f(1)=23﹣1﹣2+1=6;


(2)解:设x<0,则﹣x>0,∴f(﹣x)=2x﹣1,

∵f(x)为奇函数,∴f(x)=﹣f(﹣x)=﹣2x+1,


(3)解:作出函数f(x)的图象,如图所示:

根据函数图象可得f(x)在R上单调递增,

当x<0时,﹣7≤﹣2x+1<0,解得﹣3≤x<0;

当x≥0时,0≤2x﹣1≤3,解得0≤x≤2;

∴区间A为[﹣3,2].


【解析】(1)根据奇函数的性质代入已知式子可求;(2)设x<0,则﹣x>0,易求f(﹣x),根据奇函数性质可得f(x)与f(﹣x)的关系;(3)作出f(x)的图象,由图象可知f(x)单调递增,由f(x)=﹣7及f(x)=3可求得相应的x值,结合图象可求得A;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,奇函数为(
A.f(x)=3x
B.f(x)=x2
C.f(x)=x2
D.f(x)=( x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为 (α为参数,﹣π<α<0),曲线C2的参数方程为 (t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.

(1)求曲线C1的极坐标方程和曲线C2的普通方程;

(2射线θ=﹣ 与曲线C1的交点为P,与曲线C2的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位: )有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

天数

2

16

36

25

7

4

以最高气温位于各区间的频率代替最高气温位于该区间的概率.

(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;

(2)设六月份一天销售这种酸奶的利润为(单位:元).当六月份这种酸奶一天的进货量(单位:瓶)为多少时, 的数学期望达到最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且.令.

(1)求的通项公式;

(2)若,且数列的前项和为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有8名奥运会志愿者,其中志愿者 通晓日语, 通晓俄语, 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.

)求 被选中的概率;

)求 不全被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】x、y满足约束条件 ,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为(
A. 或﹣1
B.2或
C.2或1
D.2或﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求的单调区间;

(2)若的图象与轴交于两点,起,求的取值范围;

(3)在(2)的条件下,求证.

(参考知识:若,则有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(﹣1,1)上的函数f(x)满足:f(x)﹣f(y)=f( ),当x∈(﹣1,0)时,有f(x)>0;若P=f( )+f( ),Q=f( ),R=f(0);则P,Q,R的大小关系为

查看答案和解析>>

同步练习册答案