精英家教网 > 高中数学 > 题目详情
Xn={1,2,3…n}(n∈N*),对Xn的任意非空子集A,定义f(A)为A中的最大元素,当A取遍Xn的所有非空子集时,对应的f(A)的和为S,则S2=
5
5
,Sn=
(n-1)2n+1
(n-1)2n+1
分析:由题意得对M的任意非空子集A一共有2n-1个:在所有非空子集中每个元素出现2n-1次可以推出有2n-1个子集含n,有2n-2个子集不含n含n-1,有2n-3子集不含n,n-1,含n-2…有2k-1个子集不含n,n-1,n-2…k-1,而含k,进而利用错位相减法求出其和.
解答:解:由题意得:在所有非空子集中每个元素出现2n-1次.
故有2n-1个子集含n,有2n-2个子集不含n含n-1,有2n-3子集不含n,n-1,含n-2…有2k-1个子集不含n,n-1,n-2…k-1,而含有k.
∵定义f(A)为A中的最大元素,
∴Sn=2n-1×n+2n-2×(n-1)+…+21×2+1
Sn=1+21×2+22×3+23×4+…2n-1×n①
又2Sn=2+22×2+23×3+24×4+…2n×n…②错位相减,
∴①-②可得-Sn=1+21+22+23+…+2n-1-2n×n
∴Sn=(n-1)2n+1
∴S2=(2-1)×22+1=5.
故答案为:5,(n-1)2n+1.
点评:解决此类问题的关键是读懂并且弄清题意,结合数列求和的方法求其和即可,找出规律是关键,此题难度比较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•许昌二模)设Xn={1,2,3…n}(n∈N*),对Xn的任意非空子集A,定义f(A)为A中的最大元素,当A取遍Xn的所有非空子集时,对应的f(A)的和为Sn,则Sn=
(n-1)2n+1
(n-1)2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

设Xn={1,2,3…n}(n∈N*),对Xn的任意非空子集A,定义f(A)为A中的最大元素,当A取遍Xn的所有非空子集时,对应的f(A)的和为Sn,则S5=(  )
A、104B、120C、124D、129

查看答案和解析>>

科目:高中数学 来源:许昌二模 题型:填空题

Xn={1,2,3…n}(n∈N*),对Xn的任意非空子集A,定义f(A)为A中的最大元素,当A取遍Xn的所有非空子集时,对应的f(A)的和为Sn,则Sn=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

Xn={1,2,3…n}(n∈N*),对Xn的任意非空子集A,定义f(A)为A中的最大元素,当A取遍Xn的所有非空子集时,对应的f(A)的和为S,则S2=______,Sn=______.

查看答案和解析>>

同步练习册答案