精英家教网 > 高中数学 > 题目详情


(Ⅰ)讨论函数的单调性;
(Ⅱ)若,证明:时,成立

(Ⅰ)(Ⅱ)详见解析

解析试题分析:(Ⅰ) 利用导数分析单调性,注意分类讨论;(Ⅱ)利用导数分析单调性,进而求最值
试题解析:(Ⅰ)的定义域为
(1)当时,解得解得
所以函数上单调递增,在上单调递减;
(2)当时,恒成立,所以函数上单调递增;
(3)当时,解得解得
所以函数上单调递增,在上单调递减    (6分)
(Ⅱ)当时,, 要证成立,由于
∴只需证时恒成立,
,则

上单调递增,∴,即
上单调递增,∴
∴当时,恒成立,即原命题得证     12分
考点:导数,函数的单调性,不等式证明等知识点,考查学生的综合处理能力

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数处取得极值,且函数只有一个零点,求的取值范围.
(2)若函数在区间上不是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求证:函数上单调递增;
(2)若函数有四个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,(其中m为常数).
(1) 试讨论在区间上的单调性;
(2) 令函数.当时,曲线上总存在相异两点,使得过点处的切线互相平行,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,设曲线在与轴交点处的切线为的导函数,满足
(1)求
(2)设,求函数上的最大值;
(3)设,若对于一切,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题13分)已知函数
(1)若实数求函数上的极值;
(2)记函数,设函数的图像轴交于点,曲线点处的切线与两坐标轴所围成图形的面积为则当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求的延长线上,的延长线上,且对角线点.已知米,米。

(1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围;
(2)若(单位:米),则当的长度分别是多少时,花坛的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 (R),且该函数曲线处的切线与轴平行.
(Ⅰ)讨论函数的单调性;
(Ⅱ)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的极大值;
(2)记的导函数为,若时,恒有成立,试确定实数的取值范围.

查看答案和解析>>

同步练习册答案