A. | (1,1) | B. | $({\frac{1}{2},\frac{1}{4}})$ | C. | $({\frac{1}{3},\frac{1}{9}})$ | D. | (2,4) |
分析 设出P的坐标,进而根据点到直线的距离公式求得P到直线的距离的表达式,根据x的范围求得距离的最小值.
解答 解:设P(x,y)为抛物线y=x2上任一点,
则P到直线的距离d=$\frac{|2x-y-4|}{\sqrt{5}}$=$\frac{|2x-{x}^{2}-4|}{\sqrt{5}}$=$\frac{{x}^{2}-2x+4}{\sqrt{5}}$=$\frac{(x-1)^{2}+3}{\sqrt{5}}$,
∴x=1时,d取最小值$\frac{3\sqrt{5}}{5}$
此时P(1,1).
故选:A.
点评 本题主要考查了抛物线的简单性质,点到直线的距离公式.考查了学生数形结合的数学思想和基本的运算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{25}$ | B. | $\frac{24}{25}$ | C. | -$\frac{7}{25}$ | D. | -$\frac{24}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{5-\sqrt{7}}{3}$ | B. | $\frac{5+\sqrt{7}}{3}$ | C. | $\frac{7-\sqrt{5}}{3}$ | D. | $\frac{7+\sqrt{5}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $±\frac{2}{5}$ | D. | $±\frac{3}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com