【题目】已知函数 函数.若关于的方程有个互异的实数根,则实数的取值范围是 ( )
A.B.C.D.
【答案】B
【解析】
由题意作出函数图象,转化条件为要使直线与函数的图象有三个交点,分别考虑直线与函数在y轴右侧、左侧的图象的交点个数,即可得解.
由题意作出函数的图象,如图:
要使关于的方程有个互异的实数根,
则要使直线与函数的图象有三个交点,
易知点,,
由图象可知,当时,不合题意;
当时,若直线与函数在y轴右侧的图象相切,设切点为,
由可得,解得,,切点恰为点,
所以当时,直线与函数在y轴右侧的图象只有一个交点;
若直线与函数在y轴左侧的图象相切,设切点为,
由,所以,
解得(舍去)或,,
当直线过点时,,
所以当时,直线与函数在y轴左侧的图象有两个交点;
综上,要使直线与函数的图象有三个交点,则.
即实数的取值范围是.
故选:B.
科目:高中数学 来源: 题型:
【题目】我国是世界第一产粮大国,我国粮食产量很高,整体很安全按照14亿人口计算,中国人均粮食产量约为950斤﹣比全球人均粮食产量高了约250斤.如图是中国国家统计局网站中2010﹣2019年,我国粮食产量(千万吨)与年末总人口(千万人)的条形图,根据如图可知在2010﹣2019年中( )
A.我国粮食年产量与年末总人口均逐年递增
B.2011年我国粮食年产量的年增长率最大
C.2015年﹣2019年我国粮食年产量相对稳定
D.2015年我国人均粮食年产量达到了最高峰
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,极点为,一条封闭的曲线由四段曲线组成:,,,.
(1)求该封闭曲线所围成的图形面积;
(2)若直线:与曲线恰有3个公共点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且四个顶点构成的四边形的面积是.
(1)求椭圆的方程;
(2)已知直线经过点,且不垂直于轴,直线与椭圆交于,两点,为的中点,直线与椭圆交于,两点(是坐标原点),求四边形的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等差数列{an}中,已知a1+a3=12,a2+a4=18,n∈N*.
(1)求数列{an}的通项公式;
(2)求a3+a6+a9+…+a3n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年1月底因新型冠状病毒感染的肺炎疫情形势严峻,避免外出是减少相互交叉感染最有效的方式.在家中适当锻炼,合理休息,能够提高自身免疫力,抵抗该种病毒.某小区为了调查“宅”家居民的运动情况,从该小区随机抽取了100位成年人,记录了他们某天的锻炼时间,其频率分布直方图如下:
(1)求a的值,并估计这100位居民锻炼时间的平均值(同一组中的数据用该组区间的中点值代表);
(2)小张是该小区的一位居民,他记录了自己“宅”家7天的锻炼时长:
序号n | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
锻炼时长m(单位:分钟) | 10 | 15 | 12 | 20 | 30 | 25 | 35 |
(Ⅰ)根据数据求m关于n的线性回归方程;
(Ⅱ)若(是(1)中的平均值),则当天被称为“有效运动日”.估计小张“宅”家第8天是否是“有效运动日”?
附;在线性回归方程中,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆长轴长为4,右焦点到左顶点的距离为3.
(1)求椭圆的方程;
(2)设过原点的直线交椭圆于两点(不在坐标轴上),连接并延长交椭圆于点,若,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年月日,某地援鄂医护人员,,,,,,人(其中是队长)圆满完成抗击新冠肺炎疫情任务返回本地,他们受到当地群众与领导的热烈欢迎.当地媒体为了宣传他们的优秀事迹,让这名医护人员和接见他们的一位领导共人站一排进行拍照,则领导和队长站在两端且相邻,而不相邻的排法种数为( )
A.种B.种C.种D.种
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com