已知函数,().
(1)若有最值,求实数的取值范围;
(2)当时,若存在、,使得曲线在与处的切线互相平行,求证:.
(1);(2)证明过程详见解析.
【解析】
试题分析:本题主要考查导数的计算、利用导数求曲线的切线方程、利用导数求函数的最值、基本不等式等基础知识,考查分类讨论思想和转化思想,考查学生的计算能力、转化能力和逻辑推理能力.第一问,先对求导,再讨论方程的判别式,第一种情况,第二种情况且,第三种情况且,数形结合判断函数在定义域上是否有最值;第二问,由于在与处的切线互相平行,所以2个切线的斜率相等,得到关系式,利用基本不等式和不等式的性质证明结论.
试题解析:(1),
由知,
①当时,,在上递增,无最值;
②当时,的两根均非正,因此,在上递增,无最值;
③当时,有一正根,在上递减,在上递增;此时,有最小值;
所以,实数的范围为. 7分
(2)证明:依题意:,
由于,且,则有
. 12分
考点:1.导数的计算;2.利用导数求曲线的切线方程;3.利用导数求函数的最值;4.基本不等式.
科目:高中数学 来源:2013-2014学年山东省东营市高三4月统一质量检测考试理科数学试卷(解析版) 题型:选择题
已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )
A.48cm3 B.98cm3 C.88cm3 D.78cm3
查看答案和解析>>
科目:高中数学 来源:2013-2014学年安徽省皖北协作区高三年级联考理科数学试卷(解析版) 题型:选择题
如果数据的平均数为,标准差为,则:数据的平均数和标准差分别是( )
A.和 B.和 C.和 D.和
查看答案和解析>>
科目:高中数学 来源:2013-2014学年安徽省皖北协作区高三年级联考文科数学试卷(解析版) 题型:选择题
设满足不等式组,若的最大值为,最小值为,则实数的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年安徽省安庆市高三第二次模拟考试理科数学试卷(解析版) 题型:选择题
在极坐标系中,圆:上到直线:距离为1的点的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源:2013-2014学年安徽省安庆市高三第二次模拟考试文科数学试卷(解析版) 题型:选择题
设定义域为R的函数
若函数有7个零点,则实数的值为( )
A.0 B. C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年安徽省“皖西七校”高三年级联合考试理科数学试卷(解析版) 题型:解答题
在平面直角坐标系中,已知点和,圆是以为圆心,半径为的圆,点是圆上任意一点,线段的垂直平分线和半径所在的直线交于点.
(1)当点在圆上运动时,求点的轨迹方程;
(2)已知,是曲线上的两点,若曲线上存在点,满足(为坐标原点),求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com