精英家教网 > 高中数学 > 题目详情

【题目】考前回归课本复习过程中,一数学老师在黑板上写了下面四个函数:①;②;③;④.然后说了四句话:第一句:该函数定义域为,还是奇函数”.第二句:该函数为偶函数,值域不是”.第三句:该函数定义域为,还是单调函数”.第四句:该函数的图象有对称轴,值域是,若老师的每一句话只说对了一半,则这四个函数中符合老师说的所有函数的编号为______________.

【答案】①②③

【解析】

利用函数的定义域、值域、奇偶性、周期性、对称轴一一判断即可.

中,定义域是R,是非奇非偶函数,值域不是R,不是单调函数,图象有对称轴,满足条件;

中,定义域是R,是非奇非偶函数,值域是[0+∞),不是单调函数,图象有对称轴,满足条件;

中,定义域是R,是非奇非偶函数,值域不是R,不是单调函数,图象有对称轴,满足条件;

中,定义域是R,是非奇非偶函数,值域是(0+∞),是单调递增函数,没有对称轴,不满足条件.

故答案为:①②③

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2016高考新课标II,理15)有三张卡片,分别写有121323.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:我与丙的卡片上相同的数字不是1”,丙说:我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,直线与抛物线交于两点.

1)若过点,且,求的斜率;

2)若,且的斜率为,当时,求轴上的截距的取值范围(用表示),并证明的平分线始终与轴平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司以客户满意为出发点,随机抽选2000名客户,以调查问卷的形式分析影响客户满意度的各项因素.每名客户填写一个因素,下图为客户满意度分析的帕累托图.帕累托图用双直角坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率,分析线表示累计频率,横坐标表示影响满意度的各项因素,按影响程度(即频数)的大小从左到右排列,以下结论正确的个数是( ).

35.6%的客户认为态度良好影响他们的满意度;

156位客户认为使用礼貌用语影响他们的满意度;

③最影响客户满意度的因素是电话接起快速;

④不超过10%的客户认为工单派发准确影响他们的满意度.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,抛物线的焦点坐标为,点在该抛物线上且位于轴的两侧,

(Ⅰ)证明:直线过定点

(Ⅱ)以为切点作的切线,设两切线的交点为,点为圆上任意一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为2

(1)求椭圆的方程;

(2)如图,斜率为k的直线l过椭圆的右焦点F,且与椭圆交与A,B两点,以线段AB为直径的圆截直线x=1所得的弦的长度为,求直线l的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,两两垂直,四边形是边长为2的正方形,ACDGEF,且.

1)证明:平面.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数在点处的切线与函数相切.

1)求函数的值域;

2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在梯形中,,点在线段上,且满足,将沿翻折,使翻折后的二面角的余弦值为,如图2

1)求证:

2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案