【题目】已知,.
(1)如果函数的单调递减区间为,求函数的解析式;
(2)在(1)的条件下,求函数的图象在点处的切线方程;
(3)已知不等式恒成立,若方程恰有两个不等实根,求的取值范围.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,S1=-,an-4SnSn-1=0(n≥2).
(1) 若bn=,求证:{bn}是等差数列;
(2) 求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,
规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,
得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是偶函数.
(1)求的值;
(2)若函数的图象与直线没有交点,求b的取值范围;
(3)设,若函数与的图象有且只有一个公共点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,为正三角形,平面平面,,,.
(1)求证:平面平面;
(2)求三棱锥的体积;
(3)在棱上是否存在点,使得平面?若存在,请确定点的位置并证明;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+1,x∈R.
(1)分别计算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值;
(2)由(1)你发现了什么结论?并加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com