精英家教网 > 高中数学 > 题目详情

(本小题满分16分)已知

(I)如果函数的单调递减区间为,求函数的解析式;

(II)在(Ⅰ)的条件下,求函数的图像在点处的切线方程;

(III)若不等式恒成立,求实数的取值范围.

 

【答案】

(1).  (2) .

(3) 的取值范围是.

【解析】(I)由题意可知的解集为,所以是方程的两个根,再根据韦达定理可求出a的值.从而g(x)的解析式确定.

(II)由(I)得可求出,即点P处切线的斜率,再写出点斜式方程,转化为一般式即可.

(III)解本小题的关键此不等式就是上恒成立,即上恒成立,

然后再构造函数,利用导数求其最大值即可.

(1)  由题意的解集是

的两根分别是.

代入方程.

.                          …………5分

 (2)由(Ⅰ)知:

处的切线斜率,             

函数y=的图像在点处的切线方程为:

,即.              …………10分

(3)

即:上恒成立       

可得上恒成立

,     则  

,得(舍)

时,;当时,

时,取得最大值, =-2       .

的取值范围是.                 …………16分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010江苏卷)18、(本小题满分16分)

在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M,其中m>0,

(1)设动点P满足,求点P的轨迹;

(2)设,求点T的坐标;

(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。

查看答案和解析>>

科目:高中数学 来源:2010年泰州中学高一下学期期末测试数学 题型:解答题

(本小题满分16分)
函数(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,对任意时,恒成立,求实数的范围;
(Ⅲ)如果,当“对任意恒成立”与“内必有解”同时成立时,求 的最大值.

查看答案和解析>>

科目:高中数学 来源:2014届江苏大丰新丰中学高二上期中考试文数学试卷(解析版) 题型:解答题

(本小题满分16分)     本题请注意换算单位

某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米。已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元。

(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;

(总开发费用=总建筑费用+购地费用)

(2)要使整幢写字楼每平方米开发费用最低,该写字楼应建为多少层?

 

查看答案和解析>>

科目:高中数学 来源:2013届安徽省蚌埠市高二下学期期中联考文科数学试卷(解析版) 题型:解答题

(本小题满分16分)设命题:方程无实数根; 命题:函数

的值域是.如果命题为真命题,为假命题,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010年江苏省高一第三阶段检测数学卷 题型:解答题

(本小题满分16分)

已知函数f(x)=为偶函数,且函数yf(x)图象的两相邻对称轴间的距离为

(Ⅰ)求f)的值;

(Ⅱ)将函数yf(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数yg(x)的图象,求g(x)的单调递减区间.

 

查看答案和解析>>

同步练习册答案