【题目】已知曲线的极坐标方程为,以极点为原点,极轴所在直线为轴建立直角坐标系,过点作倾斜角为()的直线交曲线于、两点.
(1)求曲线的直角坐标方程,并写出直线的参数方程;
(2)过点的另一条直线与垂直,且与曲线交于,两点,求的最小值.
科目:高中数学 来源: 题型:
【题目】下列命题中假命题是( )
A.若随机变量服从正态分布,,则;
B.已知直线平面,直线平面,则“”是“”的必要不充分条件;
C.若,则在方向上的正射影的数量为
D.命题的否定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,则下列判断正确的是( )
A.函数的最小正周期为,在上单调递增
B.函数的最小正周期为,在上单调递增
C.函数的最小正周期为,在上单调递增
D.函数的最小正周期为,在上单调递增
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】盲盒里面通常装的是动漫、影视作品的周边,或者设计师单独设计出来的玩偶.由于盒子上没有标注,购买者只有打开才会知道自己买到了什么,因此这种惊喜吸引了众多年轻人,形成了“盲盒经济”.某款盲盒内可能装有某一套玩偶的、、三种样式,且每个盲盒只装一个.
(1)若每个盲盒装有、、三种样式玩偶的概率相同.某同学已经有了样式的玩偶,若他再购买两个这款盲盒,恰好能收集齐这三种样式的概率是多少?
(2)某销售网点为调查该款盲盒的受欢迎程度,随机发放了200份问卷,并全部收回.经统计,有的人购买了该款盲盒,在这些购买者当中,女生占;而在未购买者当中,男生女生各占.请根据以上信息填写下表,并分析是否有的把握认为购买该款盲盒与性别有关?
女生 | 男生 | 总计 | |
购买 | |||
未购买 | |||
总计 |
参考公式:,其中.
参考数据:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)该销售网点已经售卖该款盲盒6周,并记录了销售情况,如下表:
周数 | 1 | 2 | 3 | 4 | 5 | 6 |
盒数 | 16 | ______ | 23 | 25 | 26 | 30 |
由于电脑故障,第二周数据现已丢失,该销售网点负责人决定用第4、5、6周的数据求线性回归方程,再用第1、3周数据进行检验.
①请用4、5、6周的数据求出关于的线性回归方程;
(注:,)
②若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2盒,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠?
③如果通过②的检验得到的回归直线方程可靠,我们可以认为第2周卖出的盒数误差也不超过2盒,请你求出第2周卖出的盒数的可能取值;如果不可靠,请你设计一个估计第2周卖出的盒数的方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点为,,离心率为,过点且垂直于轴的直线被椭圆截得的弦长为1.
(1)求椭圆的方程;
(2)若直线交椭圆于点,两点,与线段和椭圆短轴分别交于两个不同点,,且,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】谢尔宾斯三角形是一种分形,其具体操作是取一个实心的三角形沿三边中点的连线,将它分成四个小三角形,去掉中间的那一个小三角形,然后对其余三个小三角形重复以上步骤,得到如下的系列图称之为谢尔宾斯:三角形.在第五个图形中,若随机的投入一个质点,则质点落入“空白”处的概率为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com