精英家教网 > 高中数学 > 题目详情
已知∠α是第二象限角,则∠2α是第
 
象限角.
考点:象限角、轴线角
专题:三角函数的图像与性质
分析:根据α是第二象限角,写出α的取值范围,从而得出2α的取值范围.
解答: 解:∵∠α是第二象限角,
π
2
+2kπ<α<π+2kπ,k∈Z;
∴π+4kπ<2α<2π+4kπ,k∈Z;
∴∠2α是第三、四象限角或y轴上的角;
故答案为:y轴上的角或三、四.
点评:本题考查了象限角的概念,解题时应明确象限角、轴线角的概念是什么,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求值:2log52+log5
5
4
+loge
e
+3
1
2
×
3
4
×21-log23

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x+1<0},B={x|x-3<0},那么集合A∪B等于(  )
A、{x|x<-3}
B、{x|x<3}
C、{x|x<-1}
D、{x|-1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,且该椭圆上一点A与左、右焦点F1,F2构成的三角形周长为2
2
+2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)记椭圆C的上顶点为B,直线l交椭圆C于P,Q两点,问:是否存在直线l,使椭圆C的右焦点F2恰为△PQB的垂心(△PQB三条边上的高线的交点)?若存在,求出直线l的方程,若不存在,请说明理由.
(Ⅲ)若⊙M是以AF2为直径的圆,求证:⊙M与以坐标原点为圆心,a为半径的圆相内切.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过A(1,
3
),(
2
,-
2
),且圆心在直线y=x上,求圆C方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,菱形ABCD与矩形BDEF所在平面互相垂直,∠BAD=
π
3

(Ⅰ)求证:FC∥平面AED;
(Ⅱ)若BF=k•BD,当二面角A-EF-C为直二面角时,求k的值;
(Ⅲ)在(Ⅱ)的条件下,求直线BC与平面AEF所成的角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C的中心在原点,焦点在x轴上,离心率为
6
3
,并与直线y=x+2相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如图,过圆D:x2+y2=4上任意一点P作椭圆C的两条切线m,n. 求证:m⊥n.

查看答案和解析>>

科目:高中数学 来源: 题型:

构造如图所示的数表,规则如下:先排两个l作为第一层,然后在每一层的相邻两个数之间插入这两个数和的a倍得下一层,其中a∈(0,
1
3
),设第n层中有an个数,这an个数的和为Sn(n∈N*).
(I)求an
(Ⅱ)证明:
n
2
a1-1
S1
+
a2-1
S2
+…+
an-1
Sn
<(
2
a+1
)n
-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左右焦点,其右支上一点P,满足|PF1|=3,实轴长为1,M是y轴上一点,则
PM
•(
PF1
-
PF2
)
=(  )
A、
1
2
B、
3
2
C、
5
2
D、
7
2

查看答案和解析>>

同步练习册答案