精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在直角梯形BCEF中,∠CBF=BCE=90°AD分别是BFCE上的点,ADBC,且AB=DE=2BC=2AF(如图1),将四边形ADEF沿AD折起,连结BEBFCE(如图2).在折起的过程中,下列说法中正确的个数(  )

AC∥平面BEF

BCEF四点可能共面;

③若EFCF,则平面ADEF⊥平面ABCD

④平面BCE与平面BEF可能垂直

A.0B.1C.2D.3

【答案】C

【解析】

根据折叠前后线段、角的变化情况,由线面平行、面面垂直的判定定理和性质定理对各命题进行判断,即可得出答案.

,在图②中,连接交于点,取中点,连接MO,易证AOMF为平行四边形,即AC//FM,所以AC//平面BEF,故正确;

对②,如果BCEF四点共面,则由BC//平面ADEF,可得BC//EF,又AD//BC,所以AD//EF,这样四边形ADEF为平行四边形,与已知矛盾,故②不正确;

对③,在梯形ADEF中,由平面几何知识易得EFFD,又EFCFEF平面CDF

即有CDEFCD平面ADEF,则平面ADEF平面ABCD,故③正确;

对④,在图②中,延长AFG,使得AF=FG,连接BGEG,易得平面BCE平面ABFBCEG四点共面.过FFNBGN,则FN平面BCE,若平面BCE平面BEF

则过F作直线与平面BCE垂直,其垂足在BE上,矛盾,故④错误.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产万件,需另投入流动成本万元,当年产量小于万件时,(万元);当年产量不小于7万件时,(万元).已知每件产品售价为6元,假若该同学生产的商品当年能全部售完.

1)写出年利润(万年)关于年产量(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)

2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?

(取.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设整数数列{an}共有2n)项,满足,且).

(1)当时,写出满足条件的数列的个数;

(2)当时,求满足条件的数列的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修44,坐标系与参数方程

已知曲线,直线为参数).

I)写出曲线的参数方程,直线的普通方程;

II)过曲线上任意一点作与夹角为的直线,交于点的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程是φ为参数,a>0),直线l的参数方程是t为参数),曲线C与直线l有一个公共点在x轴上,以坐标原点为极点,x轴的正半轴为极轴建立坐标系.

1)求曲线C的普通方程;

2)若点Aρ1θ),Bρ2θ),Cρ3θ)在曲线C上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.卷八中第33问:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )

A.28B.56C.84D.120

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)="xln" x–ax2+(2a–1)xaR.

)令g(x)=f'(x),求g(x)的单调区间;

)已知f(x)x=1处取得极大值.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张如图所示的33表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖的总金额为X元.

1)求概率

2)求的概率分布及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,,侧面为等边三角形且垂直于底面的中点.

(1)在棱上取一点使直线∥平面并证明;

(2)在(1)的条件下,当棱上存在一点,使得直线与底面所成角为时,求二面角的余弦值.

查看答案和解析>>

同步练习册答案