精英家教网 > 高中数学 > 题目详情
如图所示,平面∥平面,点A∈,C∈,点B∈,D∈,点E,F分别在线段AB,CD上,且AE∶EB=CF∶FD.
(1)求证:EF∥;
(2)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,
求EF的长.
(1)证明略(2)EF=或EF=
(1) ①当AB,CD在同一平面内时,


,平面∩平面ABDC=AC,
平面∩平面ABDC=BD,∴AC∥BD,                   2分
∵AE∶EB=CF∶FD,∴EF∥BD,
又EF,BD,∴EF∥.                     4分
②当AB与CD异面时,
设平面ACD∩=DH,且DH=AC.
∩平面ACDH=AC,
∴AC∥DH,∴四边形ACDH是平行四边形,             6分
在AH上取一点G,使AG∶GH=CF∶FD,
又∵AE∶EB=CF∶FD,∴GF∥HD,EG∥BH,
又EG∩GF=G,∴平面EFG∥平面.
∵EF平面EFG,∴EF∥.综上,EF∥.         8分
(2)解 如图所示,连接AD,取AD的中点M,连接ME,MF.
∵E,F分别为AB,CD的中点,
∴ME∥BD,MF∥AC,
且ME=BD=3,MF=AC=2,
∴∠EMF为AC与BD所成的角(或其补角),
∴∠EMF=60°或120°,                         12分
∴在△EFM中由余弦定理得,
EF=
==
即EF=或EF=.                                16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知:如图,为异面直线的公垂线,平面平面
.求证:
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为空间四边形的边上的点,且.求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)证明://平面
(2)在棱上是否存在点,使三棱锥
体积为?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示五个正方体图形中,l是正方体的一条对角线,点M、N、P分别为其所在棱的中点,能得出l⊥面MNP的图形的序号是_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是C1C、B1C1的中点.
求证:MN∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,平面α⊥平面β,A∈α,B∈β,AB与平面α所成的角为
π
4
,过A、B分别作两平面交线的垂线,垂足为A′、B′,若AB=3A'B',则AB与平面β所成的角的正弦值是(  )
A.
14
6
B.
5
5
C.
22
6
D.
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线abc与平面α.给出:
ac,bcab;②ac,bcab;③aα,bαab;④aα,bαab.其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案