精英家教网 > 高中数学 > 题目详情
6.设曲线y=x2在点(2,4)处的切线与曲线$y=\frac{1}{x}$(x>0)上点P处的切线垂直,则P的坐标为$(2,\;\;\frac{1}{2})$.

分析 利用y=x2在某点处的切线斜率与另一曲线的切线斜率垂直求得另一曲线的斜率,进而求得切点坐标.

解答 解:∵y=x2
∴y'=2x.x=2,y'=4
∵y=x2在点(2,4)处的切线与曲线$y=\frac{1}{x}$(x>0)上点P处的切线垂直,
∴曲线$y=\frac{1}{x}$(x>0)上点P处的切线斜率为-$\frac{1}{4}$.
又y'=-$\frac{1}{{x}^{2}}$,设点P(x0,y0
∴-$\frac{1}{{{x}_{0}}^{2}}$=-$\frac{1}{4}$,
∴x0=±2,∵x>0,∴x0=2,
∴y0=$\frac{1}{2}$,
∴点P$(2,\;\;\frac{1}{2})$.
故答案为$(2,\;\;\frac{1}{2})$.

点评 本题考查导数的几何意义:在切点处的斜率就是该点处的导数值,以及直线垂直的条件,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.直线l过点P(3,3),点Q(-1,1)到它的距离等于4,则直线l的方程是x=3或3x+4y-21=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列程序运行后的结果为(  )
A.0B.-4C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四边形ABCD是边长为2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF,∠EBD=45°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线x+y=a与圆x2+y2=1交于A,B两点,O是坐标原点,向量$\overrightarrow{OA},\;\;\overrightarrow{OB}$满足$|\overrightarrow{OA}+\overrightarrow{OB}|=|\overrightarrow{OA}-\overrightarrow{OB}|$,则实数a的值为(  )
A.1B.2C.±1D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xoy中,直线l经过点P(-3,0),其倾斜角为α,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xoy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程为ρ2-2ρcosθ-3=0.
(1)若直线l与曲线C有公共点,求倾斜角α的取值范围;
(2)设M(x,y)为曲线C上任意一点,求x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等差数列{an}中,a4=3,a11=-3,则S14=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数$f(x)=ax-\frac{b}{x}$,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0,则a+b=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若f(x)是定义在R上的奇函数,且x>0时,f(x)=x2,则x<0时,f(x)=-x2,若对任意的x∈[t,t+2],f(x+t)≥2f(x)恒成立,则实数t的取值范围是[$\sqrt{2}$,+∞).

查看答案和解析>>

同步练习册答案