精英家教网 > 高中数学 > 题目详情

【题目】已知的三边长分别是.下列说法正确的是(

A.所在直线为旋转轴,将此三角形旋转一周,所得旋转体的侧面积为

B.所在直线为旋转轴,将此三角形旋转一周,所得旋转体的体积为

C.所在直线为旋转轴,将此三角形旋转一周,所得旋转体的侧面积为

D.所在直线为旋转轴,将此三角形旋转一周,所得旋转体的体积为

【答案】AD

【解析】

所在直线为轴旋转时,所得旋转体是圆锥,求出其侧面积和体积,可知A正确,B错误;以所在直线为轴旋转时,所得旋转体是圆锥,求出其侧面积和体积,可知故C错误,D正确,从而可得答案.

所在直线为轴旋转时,所得旋转体是底面半径为3,母线长为5,高为4的圆锥,其侧面积为,体积为,故A正确,B错误;

所在直线为轴旋转时,所得旋转体是底面半径为4,母线长为5,高为3的圆锥,侧面积为,体积为,故C错误,D正确.

故选:AD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲乙两个同学进行定点投篮游戏,已知他们一次投篮中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.

(1)甲同学至少有4次投中的概率

(2)乙同学投篮次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ex-x2+axR,曲线y=fx)在(0,f(0))处的切线方程为y=bx

(1)求fx)的解析式;

(2)当xR时,求证:fx)≥-x2+x

(3)若fx)≥kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个人排成一排,在下列情况下,各有多少种不同排法?

1)甲不在两端;

2)甲、乙、丙三个必须在一起;

3)甲、乙必须在一起,且甲、乙都不能与丙相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,不过原点的直线与椭圆交于A、B两点.

(1)求面积的最大值.

(2)是否存在椭圆,使得对于椭圆的每一条切线与椭圆均相交,设交于A、B两点,且恰取最大值?若存在,求出该椭圆;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列为等差数列,,数列的前项和为,若对一切,恒有,则能取到的最大整数是( )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集的数据分成六组,并作出频率分布直方图(如图),将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.

(1)请根据直方图中的数据填写下面的列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?

(2)现按照“课外体育达标”与“课外体育不达标”进行分层抽样,抽取8人,再从这8名学生中随机抽取3人参加体育知识问卷调查,记“课外体育不达标”的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,向量与向量的夹角为,且.

(1)求向量

(2)设向量,向量,其中,若,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,,其中.

(Ⅰ) 判断函数上的单调性;

(Ⅱ) 设函数的定义域为,且有极值点.

(ⅰ) 试判断当时, 是否满足题目的条件,并说明理由;

(ⅱ) 设函数的极小值点为,求证: .

查看答案和解析>>

同步练习册答案