分析 令t=log2x,∵x∈[2a-1,2${\;}^{{a}^{2}-2a+2}$],∴t∈[a-1,a2-2a+2],再结函数图象等价转化求解.
解答 解:令t=log2x,∵x∈[2a-1,2${\;}^{{a}^{2}-2a+2}$],
∴t∈[a-1,a2-2a+2],则:
f(x)=g(t)=t2-2at+a2-1=(t-a)2-1,
当函数g(t)的值域为[-1,0]时,即(t-a)2-1∈[-1,0],
解得,t∈[a-1,a+1],且t=a时,g(t)取得最小值-1,
再结合二次函数g(t)的图象,要使t∈[a-1,a2-2a+2],g(t)∈[-1,0],
则a2-2a+2∈[a,a+1],即$\left\{\begin{array}{l}{a^2-2a+2≥a}\\{a^2-2a+2≤a+1}\end{array}\right.$,
解得a∈[$\frac{3-\sqrt{5}}{2}$,1]∪[2,$\frac{3+\sqrt{5}}{2}$].
点评 本题主要考查了函数的图象与性质,以及含参值域问题的解法,运用了换元法与数形结合的解题思想,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{\sqrt{11}}{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{5}{2}$ | B. | $\frac{1}{6}$ | C. | $\frac{5}{6}$ | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{AD}$ | B. | $\overrightarrow{AD}$+$\overrightarrow{DC}$=$\overrightarrow{AC}$ | C. | $\overrightarrow{CA}$+$\overrightarrow{AD}$=$\overrightarrow{DC}$ | D. | $\overrightarrow{DB}$+$\overrightarrow{AD}$=$\overrightarrow{AB}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com