精英家教网 > 高中数学 > 题目详情
2.如果a+b=1,那么ab的最大值是(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

分析 由于求ab的最大值,只考虑a,b>0时即可.利用基本不等式的性质即可得出.

解答 解:由于求ab的最大值,只考虑a,b>0时即可.
∵a+b=1,∴$1≥2\sqrt{ab}$,解得ab≤$\frac{1}{4}$,当且仅当a=b=$\frac{1}{2}$时取等号.
那么ab的最大值是$\frac{1}{4}$.
故选:B.

点评 本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.任意a∈R,曲线y=ex(x2+ax+1-2a)在点P(0,1-2a)处的切线l与圆C:x2+2x+y2-12=0的位置关系是(  )
A.相交B.相切C.相离D.以上均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F1,F2分别是双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a,b>0)$的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆内,则双曲线离心率的取值范围是(  )
A.(1,2)B.(2,+∞)C.$(1,\;\sqrt{2})$D.$(\sqrt{2},\;+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某小学共有学生2000人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐30分”活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为(  )
A.120B.40C.30D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)=log3x,f(a)>f(2),那么a的取值范围是(  )
A.{a|a>2}B.{a|1<a<2}C.$\{a|a>\frac{1}{2}\}$D.$\{a|\frac{1}{2}<a<1\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果关于x的不等式x2<ax+b的解集是{x|1<x<3},那么ba等于(  )
A.-81B.81C.-64D.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数学课外活动中,小明同学进行了糖块溶于水的实验:将一块质量为7克的糖块放入一定量的水中,测量不同时刻未溶解糖块的质量,得到若干组数据,其中在第5分钟末测得未溶解糖块的质量为3.5克.联想到教科书中研究“物体冷却”的问题,小明发现可以用指数型函数S=ae-kt(a,k是常数)来描述以上糖块的溶解过程,其中S(单位:克)代表t分钟末未溶解糖块的质量.
(1)a=7;
(2)求k的值;
(3)设这个实验中t分钟末已溶解的糖块的质量为M,请画出M随t变化的函数关系的草图,并简要描述实验中糖块的溶解过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆O:x2+y2=16及圆内一点F(-3,0),过F任作一条弦AB.
(1)求△AOB面积的最大值及取得最大值时直线AB的方程;
(2)若点M在x轴上,且使得MF为△AMB的一条内角平方线,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a=$\sqrt{0.4}$,b=20.4,c=0.40.2,则a,b,c三者的大小关系是(  )
A.b>c>aB.b>a>cC.a>b>cD.c>b>a

查看答案和解析>>

同步练习册答案