【题目】如图,在长方体ABCDA1B1C1D1中,AB=AA1=1,E为BC中点.
(1)求证:C1D⊥D1E;
(2)在棱AA1上是否存在一点M,使得BM∥平面AD1E?若存在,求的值,若不存在,说明理由;
(3)若二面角B1AED1的大小为90°,求AD的长.
【答案】见解析
【解析】
解:(1)证明:以D为坐标原点,建立如图所示的空间直角坐标系Dxyz,
设AD=a,则D(0,0,0),A(a,0,0),B(a,1,0),B1(a,1,1),C1(0,1,1),D1(0,0,1),E,∴=(0,-1,-1),=,
∴C1D⊥D1E。
(2)设=h,则M(a,0,h),
∴=(0,-1,h),=,=(-a,0,1),
设平面AD1E的法向量为n=(x,y,z),
∴平面AD1E的一个法向量为n=(2,a,2a),
∵BM∥平面AD1E,
∴⊥n,即·n=2ah-a=0,∴h=。
即在AA1上存在点M,使得BM∥平面AD1E,此时=。
(3)连接AB1,B1E,设平面B1AE的法向量为m=(x′,y′,z′),=,=(0,1,1),
∴平面B1AE的一个法向量为m=(2,a,-a).
∵二面角B1AED1的大小为90°,
∴m⊥n,∴m·n=4+a2-2a2=0,
∵a>0,∴a=2,即AD=2。
科目:高中数学 来源: 题型:
【题目】设函数.
(1)当时,在上恒成立,求实数的取值范围;
(2)当时,若函数在上恰有两个不同的零点,求实数的取值范围;
(3)是否存在常数,使函数和函数在公共定义域上具有相同的单调性?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.
(I)求乙得分的分布列和数学期望;
(II)求甲、乙两人中至少有一人入选的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos xsin 2x,下列结论中正确的是________(填入正确结论的序号).
①y=f(x)的图象关于点(2π,0)中心对称;
②y=f(x)的图象关于直线x=π对称;
③f(x)的最大值为;
④f(x)既是奇函数,又是周期函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).如图茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.
(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;
(2)学校规定:成绩不低于75分的为优秀,请填写列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.
甲班 | 乙班 | 合计 | |
优秀 | |||
不优秀 | |||
合计 |
参考公式与临界值表: .
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的方程为+=1(a>b>0),右焦点为F(c,0)(c>0),方程ax2+bx-c=0的两实根分别为x1,x2,则P(x1,x2)( )
A.必在圆x2+y2=2内
B.必在圆x2+y2=2外
C.必在圆x2+y2=1外
D.必在圆x2+y2=1与圆x2+y2=2形成的圆环之间
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某学校高三年级共800名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155 cm到195 cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165);…;第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.
(Ⅰ)估计这所学校高三年级全体男生身高在180 cm以上(含180 cm)的人数;
(Ⅱ)求第六组、第七组的频率并补充完整频率分布直方图(用虚线标出高度);
(III)若从身高属于第六组和第八组的所有男生中随机抽取两人,记他们的身高分别为x、y,求事件“|x-y|≤5”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com