精英家教网 > 高中数学 > 题目详情

【题目】下列关于等差数列和等比数列的叙述正确的是(

A.若非常数列为等差数列,则也可能是等差数列

B.若非常数列为等比数列,则不可能是等差数列

C.若数列的前n项和,则数列可能是等差数列

D.若等差数列的前n项和有最大值,则公差d可能大于零

【答案】C

【解析】

由题意结合等差数列的定义可判断A;举出反例可判断B;举出例子可判断C;设数列的首项为,公差为,由等差数列前n项和的函数特性可判断D;即可得解.

对于A,设数列的公差为,则,由不为定值可知不为定值,故不可能是等差数列,故A错误;

对于B,若,则,此时为等差数列,故B错误;

对于C,若,则,此时,数列是等差数列,故C正确;

对于D,设数列的首项为,公差为

,若,结合二次函数的图象与性质可知无最大值,故D错误.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60/盒、65/盒、80/盒、90/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%

①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;

②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了贯彻落实中央省市关于新型冠状病毒肺炎疫情防控工作要求,积极应对新型冠状病毒疫情,切实做好2020年春季开学工作,保障校园安全稳定,普及防控知识,确保师生生命安全和身体健康.某校开学前,组织高三年级800名学生参加了“疫情防控”网络知识竞赛(满分150分).已知这800名学生的成绩均不低于90分,将这800名学生的成绩分组如下:第一组,第二组,第三组,第四组,第五组,第六组,得到的频率分布直方图如图所示.

1)求的值并估计这800名学生的平均成绩(同一组中的数据用该组区间的中点值代表);

2)该校“群防群控”督查组为更好地督促高三学生的“个人防控”,准备从这800名学生中取2名学生参与督查工作,其取办法是:先在第二组第五组第六组中用分层抽样的方法抽取6名学生,再从这6名学生中随机抽取2名学生.记这2名学生的竞赛成绩分别为.求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,DE分别为BCAC的中点,AB=BC

求证:(1A1B1∥平面DEC1

2BEC1E

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班有40位同学,座位号记为,用下面的随机数表选取5组数作为参加青年志愿者活动的5位同学的座位号.

4954 4454 8217 3793 2378 8735 2096 4384 2634 9164

5724 5506 8877 0474 4767 2176 3350 2583 9212 0767 5086

选取方法是从随机数表第一行的第11列和第12列数字开始,由左到右依次选取两个数字,则选出来的第5个志愿者的座位号是( )

A.09B.20C.37D.38

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017安徽蚌埠一模)已知椭圆C:=1(a>b>0)的离心率为,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且△PF1F2的周长是8+2.

(1)求椭圆C的方程;

(2)设圆T:(x-2)2+y2=,过椭圆的上顶点M作圆T的两条切线交椭圆于E,F两点,求直线EF的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间和极值;

(2)若有两个零点,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知圆的圆心坐标为,半径为,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,直线的参数方程为: 为参数)

(1)求圆和直线的极坐标方程;

(2)点 的极坐标为,直线与圆相较于,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),在矩形中,已知分别为的中点,对角线交于点,沿把矩形折起,使两个半平面所成二面角为60°,如图(2.

1)求证:

2)求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案