精英家教网 > 高中数学 > 题目详情

如图所示,PA为0的切线,A为切点,PBC是过点O的割线,PA ="10,PB" =5、

(I)求证:;
(2)求AC的值.

(I) 先证,进而证明 (II) AC=

解析试题分析:(Ⅰ)∵为⊙的切线,∴
.∴.                          ……4分
(Ⅱ)∵为⊙的切线,是过点的割线,∴

又∵,,∴                             ……7分
由(Ⅰ)知,,∵是⊙的直径,
.∴,
∴AC=                                                          ……10分
考点:本小题主要考查与圆有关的比例线段,相似三角形的性质.
点评:本题主要考查与圆有关的比例线段、相似三角形的判定及切线性质的应用.解决本题第一问的关键在于先由切线得到

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,是圆的内接四边形,,过点的圆的切线与的延长线交于点,证明:

(Ⅰ)
(II)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图AB为圆O直径,P为圆O外一点,过P点作PC⊥AB,垂是为C,PC交圆O于D点,PA交圆O于E点,BE交PC于F点。

(I)求证:∠PFE=∠PAB (II)求证:CD2=CF·CP

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

[选修4 - 1:几何证明选讲](本小题满分10分)
如图,在梯形中,∥BC,点分别在边上,设相交于点,若四点共圆,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分10分)
如下图,ABCD是圆的两条平行弦,BE//ACBECDE、交圆于F,过A点的切线交DC的延长线于PPC=ED=1,PA=2.

(I)求AC的长;
(II)求证:BEEF

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
如图,已知与圆相切于点,经过点的割线交圆于点,的平分线分别交于点

(Ⅰ)证明:=
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

选修4-1:几何证明选讲
如图,圆O1与圆O2相交于A、B两点,AB是圆O2的直径,过A点作圆O1的切线交圆O2于点E,并与BO1的延长线交于点P,PB分别与圆O1、圆O2交于C,D两点。

求证:(Ⅰ)PA·PD=PE·PC;(Ⅱ)AD=AE。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED。

(1)证明:CD//AB;(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.

(1)求证:DC平面ABC;
(2)求BF与平面ABC所成角的正弦;
(3)求二面角B-EF-A的余弦

查看答案和解析>>

同步练习册答案