精英家教网 > 高中数学 > 题目详情
已知椭圆的焦点在轴上,离心率,且经过点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)斜率为的直线与椭圆相交于两点,求证:直线的倾斜角互补.
(1) 见证明.

试题分析:(Ⅰ)椭圆有两个独立量,所以需要建立两个方程①利用离心率 ②利用点 在圆上,然后解方程即可,(Ⅱ)建立直线方程后与椭圆方程联立利用韦达定理求出两根之和 两根之积, ,再把两条直线的斜率之和, 来表示,整理即可.
试题解析:(Ⅰ)设椭圆的方程为:,(
,得                          2分
∵椭圆经过点,则,解得                      3分
∴椭圆的方程为                                     4分
(Ⅱ)设直线方程为.
联立得:
,得
                                      6分


10分
                              11分
,所以,直线的倾斜角互补.                    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

抛物线M: 的准线过椭圆N: 的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.

(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为椭圆的左,右焦点,为椭圆上的动点,且的最大值为1,最小值为-2.
(I)求椭圆的方程;
(II)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点。试判断的大小是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为6.
(I)求椭圆的方程;
(II)若点的坐标为,不过原点的直线与椭圆相交于两点,设线段的中点为,点到直线的距离为,且三点共线.求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是椭圆的左、右焦点,且离心率,点为椭圆上的一个动点,的内切圆面积的最大值为.
(1) 求椭圆的方程;
(2) 若是椭圆上不重合的四个点,满足向量共线,
线,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点坐标分别是,离心率,直线与椭圆交于不同的两点.
(1)求椭圆的方程;
(2)求弦的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆动圆与圆外切并与圆内切,圆心的轨迹为曲线.
(1)求的方程;
(2)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2是椭圆E:的左、右焦点,P为直线上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点.
(1)求该椭圆的标准方程;
(2)设点,若是椭圆上的动点,求线段的中点的轨迹方程.

查看答案和解析>>

同步练习册答案