精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图所示, 四棱锥PABCD的底面是边长为1的正方形,PA^CDPA = 1, PD=,EPD上一点,PE = 2ED

(Ⅰ)求证:PA^平面ABCD
(Ⅱ)求二面角D-ACE的余弦值;
(Ⅲ)在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.
(Ⅰ) 见解析;
(Ⅱ)二面角D—AC―E的平面角的余弦值为
(Ⅲ)存在PC的中点F, 使得BF//平面AEC.
本试题主要是考查了线面的垂直的证明以及二面角的求解,以及线面平行的判定定理的综合运用
(1)根据已知结合勾股定理和线面垂直的判定定理得到。
(2)建立空间直角坐标系,然后设出点的坐标和向量的坐标,借助于向量的数量积的性质,表示向量的夹角,得到二面角的平面角的求解。
(3)假设存在点PC的中点F, 使得BF//平面AEC.,那个根据假设推理论证,得到结论。
解:(Ⅰ)  PA =" PD" =" 1" ,PD =" 2" ,
 PA2 + AD2 = PD2, 即:PA ^ AD      ---2分
又PA ^ CD , AD , CD 相交于点D,
 PA ^平面ABCD                -------4分
(Ⅱ)过E作EG//PA 交AD于G,
从而EG ^平面ABCD,
且AG =" 2GD" , EG = PA = ,                                 ------5分
连接BD交AC于O, 过G作GH//OD ,交AC于H,

连接EH.GH ^ AC , EH ^ AC ,
Ð EHG为二面角D—AC―E的平面角.                        -----6分
tanÐEHG = = .二面角D—AC―E的平面角的余弦值为-------7分
(Ⅲ)以AB , AD , PA为x轴、y轴、z轴建立空间直角坐标系.
则A(0 ,0, 0),B(1,0,0) ,C(1,1,0),P(0,0,1),E(0 , ,), = (1,1,0),
 = (0 , , )                                               
设平面AEC的法向量= (x, y,z) , 则
 ,即:, 令y =" 1" ,
 = (- 1,1, - 2 )                                      -------------10分
假设侧棱PC上存在一点F, 且 ,
(0 £ £ 1), 使得:BF//平面AEC, 则× = 0.
又因为:+  = (0 ,1,0)+ (-,-,)= (-,1-,),
× =+ 1- - 2 =" 0" ,  = ,
所以存在PC的中点F, 使得BF//平面AEC.                  ----------------12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题10分)已知正方体是底对角线的交点.

求证:(1)∥面
(2 ). 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,已知平面平面分别是棱长为1与2的正三角形,//,四边形为直角梯形,//,点的重心,中点,

(Ⅰ)当时,求证://平面
(Ⅱ)若直线所成角为,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△AEF沿EF折起到DA1EF的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2)

(Ⅰ)求证:A1E⊥平面BEP;
(Ⅱ)求直线A1E与平面A1BP所成角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,底面是矩形,平面
是线段上的点,是线段上的点,且

(Ⅰ)当时,证明平面
(Ⅱ)是否存在实数,使异面直线所成的角为?若存在,试求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,己知平行四边形ABCD中,∠ BAD = 600,AB=6, AD=3,G为CD中点,现将梯形ABCG沿着AG折起到AFEG。
(I)求证:直线CE//平面ABF;
(II)如果FG⊥平面ABCD求二面B一EF一A的平面角的余弦值. 
(Ⅲ)若直线AF与平面 ABCD所成角为,求证:FG⊥平面ABCD

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线平面,直线平面,则下列四个命题中正确的是 (  )
;③;④
A.②④B.①②C.③④D.①③

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,E、F分别是正方形SD1DD2的边D1D、DD2的中点沿SE,SF,EF将其折成一个几何体,使D1,D,D2重合,记作D。给出下列位置关系:①SD⊥面DEF;  ②SE⊥面DEF; ③DF⊥SE;  ④EF⊥面SED,其中成立的有           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.
(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3)若P是棱A1C1上一点,求CP+PB1的最小值.

查看答案和解析>>

同步练习册答案