精英家教网 > 高中数学 > 题目详情
如图,长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成角的余弦值是(  )
A.
15
5
B.
2
2
C.
10
5
D.0

以DA,DC,DD1所在直线方向x,y,z轴,建立空间直角坐标系,
则可得A1(1,0,2),E(0,0,1),G(0,2,1),F(1,1,0)
A1E
=(-1,0,-1),
GF
=(1,-1,-1)
设异面直线A1E与GF所成角的为θ,
则cosθ=|cos<
A1E
GF
>|=0,
故选:D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

(5分)(2011•天津)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体ABCD-A1B1C1D1中,点E在棱CD上.
(1)求证:EB1⊥AD1
(2)若E是CD中点,求EB1与平面AD1E所成的角;
(3)设M在BB1上,且
BM
MB1
=
2
3
,是否存在点E,使平面AD1E⊥平面AME,若存在,指出点E的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面为菱形且∠DAB=60°,PA⊥底面ABCD,AB=2,PA=2
3
,E为PC的中点.
(1)求直线DE与平面PAC所成角的大小;
(2)求C点到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,PA=AB=BC=AC,E是PC的中点.
(1)求证:PD⊥平面ABE;
(2)求二面角A-PD-C的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F分别为AD,CD的中点.
(1)若AC1⊥D1F,求a的值;
(2)若a=2,求二面角E-FD1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PA⊥平面ABCD,ABCD为正方形,,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.
(1)求证:面EFG⊥面PAB;
(2)求异面直线EG与BD所成的角的余弦值;
(3)求点A到面EFG的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D,E,F分别是棱AB,BC,CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为(  )
A.
1
5
B.
2
5
C.
5
5
D.
2
5
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A1B1C1的底面ABC位于矩形AEDC中,B点为ED的中点,AC=AA1=2AE=2.
(1)求异面直线AB1与A1D所成角的余弦值;
(2)求平面A1B1E与平面AEDC所成二面角大小的余弦值.

查看答案和解析>>

同步练习册答案