精英家教网 > 高中数学 > 题目详情

【题目】已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为万元,且.

1)写出年利润W(万元)关于年产量x(千件)的函数解析式;

2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入年总成本)

【答案】1;(2)当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.

【解析】试题分析:本题考查的知识点是分段函数及函数的最值,分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上xy取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.第一问,由年利润W=年产量每千件的销售收入为Rx成本,又由,且年固定成本为10万元,每生产1千件需另投入2.7万元.我们易得年利润W(万元)关于年产量x(千件)的函数解析式;

第二问,由第一问的解析式,我们求出各段上的最大值,即利润的最大值,然后根据分段函数的最大值是各段上最大值的最大者,即可得到结果.

试题解析:(1)当时,

时,

.

2时,由,得

且当时, ;当时,

时,W取最大值,且

时,

当且仅当

时,

故当时,W取最大值38

综合①②知当时,W取最大值38.6万元,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“过大年,吃水饺”是我国不少地方过春节的一大习俗,2018年春节前夕, 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标.

(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);

(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;

②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.

附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为

②若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲在四边形ABCD 是边长为4的正三角形,把沿AC折起到的位置,使得平面PAC平面ACD如图乙所示分别为棱的中点.

1求证: 平面

2求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数的极值;

(2)设函数,求函数的单调区间;

(3)若在区间不存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市初三毕业生参加中考要进行体育测试,某实验中学初三(8)班的一次体育测试成绩的茎叶图和频率分布直方图都受到不同程度的涂黑,但可见部分如图,据此解答如下问题.

(Ⅰ)求全班人数及中位数,并重新画出频率直方图;

(Ⅱ)若要从分数在之间的成绩中任取两个学生成绩分析学生得分情况,在抽取的学生中,求至少有一个分数在之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求 的值;

(2)试猜想的表达式(用一个组合数表示),并证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中.

1)设讨论的单调性;

2)若函数内存在零点,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面为平行四边形, ,三角形为锐角三角形,面,设的中点.

求证: (1)

(2) .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—5:不等式选讲]

已知.

(1)若的解集为,求的值;

(2)若不等式恒成立,求实数的范围.

查看答案和解析>>

同步练习册答案