【题目】大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备.某高中成功开设大学先修课程已有两年,共有250人参与学习先修课程.
(Ⅰ)这两年学校共培养出优等生150人,根据下图等高条形图,填写相应列联表,并根据列联表检验能否在犯错的概率不超过0.01的前提下认为学习先修课程与优等生有关系?
优等生 | 非优等生 | 总计 | |
学习大学先修课程 | 250 | ||
没有学习大学先修课程 | |||
总计 | 150 |
(Ⅱ)某班有5名优等生,其中有2名参加了大学生先修课程的学习,在这5名优等生中任选3人进行测试,求这3人中至少有1名参加了大学先修课程学习的概率.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
参考公式:,其中
【答案】(1)列联表见解析 有关系(2)
【解析】
(1)根据优等生的人数、学习大学先修课程的人数,结合等高条形图计算数值,填写好表格,计算出的值,比较题目所给参考数据,得出“在犯错误的概率不超过0.01的前提下认为学习先修课程与优等生有关系”这个结论.(2)利用列举法,求得基本事件的众数为种,其中“没有学生参加大学先修课程学习” 的情况有种,利用对立事件的概率计算方法,求得至少有名参加了大学先修课程学习的概率.
(1)列联表如下:
优等生 | 非优等生 | 总计 | |
学习大学先修课程 | 50 | 200 | 250 |
没有学习大学先修课程 | 100 | 900 | 1000 |
总计 | 150 | 1100 | 1250 |
由列联表可得,
因此在犯错误的概率不超过0.01的前提下认为学习先修课程与优等生有关系.
(2)在这5名优等生中,记参加了大学先修课程的学习的2名学生为,,记没有参加大学先修课程学习的3名学生为,,.
则所有的抽样情况如下:共10种,
,, ,,,
,,,,,
其中没有学生参加大学先修课程学习的情况有1种,为.
记事件为至少有1名学生参加了大学先修课程的学习,则.
科目:高中数学 来源: 题型:
【题目】某科技公司新研制生产一种特殊疫苗,为确保疫苗质量,定期进行质量检验.某次检验中,从产品中随机抽取100件作为样本,测量产品质量体系中某项指标值,根据测量结果得到如下频率分布直方图:
(1)求频率分布直方图中的值;
(2)技术分析人员认为,本次测量的该产品的质量指标值X服从正态分布,若同组中的每个数据用该组区间的中间值代替,计算,并计算测量数据落在(187.8,212.2)内的概率;
(3)设生产成本为y元,质量指标值为,生产成本与质量指标值之间满足函数关系假设同组中的每个数据用该组区间的中间值代替,试计算生产该疫苗的平均成本.
参考数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的函数f(x)=是奇函数.
(1)求b的值,判断并用定义法证明f(x)在R上的单调性;
(2)解不等式f(2x+1)+f(x)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为D的函数y=f(x),如果存在区间[m,n]D,同时满足:
①f(x)在[m,n]内是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.
(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.
(2)求证:函数不存在“和谐区间”.
(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com