精英家教网 > 高中数学 > 题目详情
对于函数f(x)=
x-1x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)]
(n∈N*,且n≥2),令集合M={x|f2007(x)=x,x∈R},则集合M=
 
分析:f(x)=
x-1
x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)]
,代入验证知具有周期性,周期为4,因此f2007(x)=f3(x)=-
x+1
x-1
,解方程x=-
x+1
x-1
,即可求得集合M.
解答:解:∵f(x)=
x-1
x+1
,f2(x)=f[f(x)],
∴f2(x)=f[f(x)]=-
1
x
,f3(x)=f[f2(x)]=-
x+1
x-1

f4(x)=f[f3(x)]=x,f5(x)=f[f4(x)]=
x-1
x+1

因此f2007(x)=f3(x)=-
x+1
x-1

解x=-
x+1
x-1
,的x∈∅.
故答案为∅.
点评:此题是个基础题.考查函数的对应法则和周期性的,用列举法探讨对应法则的周期性,考查了创造性分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:013

下列说法正确的是

[  ]

A.对于函数f(x),如果存在一个常数T,使得定义域内的每一个x值都满足f(x+T)=f(x),则函数f(x)叫做周期函数

B.对于函数f(x),如果存在一个非零常数T,使得定义域内存在一个x满足于f(x+T)=f(x),则f(x)叫做周期函数

C.对于函数f(x),如果存在一个非零常数T,使得定义域内存在若干个x满足f(x+T)=f(x),则f(x)叫做周期函数

D.对于函数f(x),如果存在一个非零常数T,使得定义域的每一个x值满足f(x+T)=f(x),则f(x)叫做周期函数

查看答案和解析>>

科目:高中数学 来源: 题型:013

下列说法正确的是

[  ]

A.对于函数f(x),如果存在一个常数T,使得定义域内的每一个x值都满足f(x+T)=f(x),则函数f(x)叫做周期函数

B.对于函数f(x),如果存在一个非零常数T,使得定义域内存在一个x满足于f(x+T)=f(x),则f(x)叫做周期函数

C.对于函数f(x),如果存在一个非零常数T,使得定义域内存在若干个x满足f(x+T)=f(x),则f(x)叫做周期函数

D.对于函数f(x),如果存在一个非零常数T,使得定义域的每一个x值满足f(x+T)=f(x),则f(x)叫做周期函数

查看答案和解析>>

科目:高中数学 来源:四川省成都树德中学2012届高考适应考试(一)数学试题文理科 题型:022

对于函数f(x),定义:若存在非零常数M,T,使函数f(x)对定义域内的任意x,都满足f(x+T)-f(x)=M,则称函数y=f(x)是准周期函数,非零常数T称为函数y=f(x)的一个准周期.如函数f(x)=2x+sinx是以T=2π为一个准周期且M=4π的准周期函数.下列命题:

①2π是函数f(x)=sinx的一个准周期;

②f(x)=x+(-1)x(x∈z)是以T=2为一个准周期且M=2的准周期函数;

③函数f(x)=kx+b+Asin(wx+φ)(k≠0,w>0)是准周期函数;

④如果f(x)是一个一次函数与一个周期函数的和的形式,则f(x)一定是准周期函数;

⑤如果f(x+1)=-f(x)则函数h(x)=x+f(x)是以T=2为一个准周期且M=4的准周期函数;其中的真命题是________

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案