精英家教网 > 高中数学 > 题目详情
已知动圆经过点A(3,0),且和直线x+3=0相切,
(1)求动圆圆心的轨迹C的方程;
(2)已知曲线C上一点M,且|AM|=5,求M点的坐标.
分析:(1)设出动圆圆心的坐标,根据题意结合抛物线的定义得动圆圆心的轨迹方程;
(2)设出M点的坐标,由抛物线的焦半径公式求出M的横坐标,代入抛物线方程后求其纵坐标.
解答:解:(1)设动圆圆心C(x,y),
∵动圆经过点A(3,0),且和直线x+3=0相切,
∴动圆圆心到点A(3,0)的距离和到直线x+3=0的距离相等,
∴轨迹为以A为焦点,以x+3=0为准线的抛物线,其方程为y2=12x;
(2)设M(x0,y0),则x0+3=5,∴x0=2.
代入抛物线方程得:y02=24y0=±2
6

∴M(2,±2
6
).
点评:本题考查了利用抛物线的定义求轨迹方程,考查了焦半径公式的用法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动⊙M经过点D(-2,0),且与圆C:x2+y2-4x=0外切.
(1)求点M的轨迹方程;
(2)记半径最小的圆为⊙M0,直线l与⊙M0相交于A,B两点,且⊙M0上存在点P,使得
M0P
=
M0A
+
M0B
=(λ+1,3λ)
(λ≠0)
①求⊙M0的方程;
②求直线l的方程及相应的点P坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆C经过点A(2,-3)和B(-2,-5).
(1)当圆C面积最小时,求圆C的方程;
(2)若圆C的圆心在直线3x+y+5=0上,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求经过点P(-3,2
7
)和Q(-6
2
,-7)的双曲线的标准方程;
(2)已知动圆M经过点A(3,0),且与直线l:x=-3相切,求动圆圆心M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆P与圆M:(x+
2
6
3
)2+y2=16
相切,且经过点N(
2
6
3
,0)

(1)试求动圆的圆心P的轨迹C的方程;
(2)设O为坐标原点,圆D:(x-t)2+y2=t2(t>0),若圆D与曲线C交于关于x轴对称的两点A、B(点A的纵坐标大于0),且
OA
OB
=0
,请求出实数t的值;
(3)在(2)的条件下,点D是圆D的圆心,E、F是圆D上的两动点,满足2
OD
=
OE
+
OF
,点T是曲线C上的动点,试求
TE
TF
的最小值.

查看答案和解析>>

同步练习册答案