分析 (1)推导出AC⊥PE,AC⊥BD,由此能证明AC⊥PB.
(2)推导出CE⊥PD,过E作EH⊥PD于H,连接CH,则PD⊥面CEH,∠CHE是二面角E-PD-C的平面角.由此能求出二面角E-PD-C的余弦值.
解答 证明:(1)∵E是AC的中点,PA=PC,
∴AC⊥PE,
∵底面ABCD是菱形,∴AC⊥BD,
又PE∩BD=E,∴AC⊥面PDB,
又PB?面PDB,∴AC⊥PB.
解:(2)由(1)CE⊥面PDB,PD?面PDB,∴CE⊥PD,
过E作EH⊥PD于H,连接CH,则PD⊥面CEH,
又CH?面CEH,则PD⊥CH,
∴∠CHE是二面角E-PD-C的平面角.
由(1)知∠PEB是二面角P-AC-B的平面角,所以∠PEB=60°,
设AB=a,在Rt△PDB中,$PE=\frac{1}{2}BD=BE=\frac{{\sqrt{3}}}{2}a$,△PBE是等边三角形,$PB=\frac{{\sqrt{3}}}{2}a$,EH是△PBD的中位线,
则$EH=\frac{1}{2}PB=\frac{{\sqrt{3}}}{4}a$,$CE=\frac{a}{2}$,CH=$\sqrt{C{E}^{2}+E{H}^{2}}$=$\frac{\sqrt{7}}{4}a$,
∴$cos∠CHE=\frac{EH}{CH}=\frac{{\sqrt{21}}}{7}$,
即二面角E-PD-C的余弦值为$\frac{{\sqrt{21}}}{7}$.
点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 12 | B. | 20 | C. | 2$\sqrt{41}$ | D. | 4$\sqrt{41}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com