9£®Ä³Ê³ÌÃÒÔÃæʳºÍÃ×ʳΪÖ÷ʳ£¬Ô±¹¤Á¼ºÃµÄÈÕ³£ÒûʳӦ¸ÃÖÁÉÙÐèҪ̼ˮ»¯ºÏÎï5¸öµ¥Î»£¬µ°°×ÖÊ6¸öµ¥Î»£¬Ö¬·¾6¸öµ¥Î»£¬Ã¿·ÝÃæʳº¬ÓÐ7¸öµ¥Î»µÄ̼ˮ»¯ºÏÎ7¸öµ¥Î»µÄµ°°×ÖÊ£¬14¸öµ¥Î»µÄÖ¬·¾£¬»¨·Ñ28Ôª£»¶øÿ·ÝÃ×ʳº¬ÓÐ7¸öµ¥Î»µÄ̼ˮ»¯ºÏÎ14¸öµ¥Î»µÄµ°°×ÖÊ£¬7¸öµ¥Î»µÄÖ¬·¾£¬»¨·Ñ21Ôª£®ÎªÁËÂú×ãÔ±¹¤µÄÈÕ³£ÒûʳҪÇó£¬Í¬Ê±Ê¹»¨·Ñ×îµÍ£¬ÐèҪͬʱ²É¹ºÃæʳºÍÃ×ʳ¸÷¶àÉÙ·Ý£¿

·ÖÎö ÉèÿÌ칺ÂòÃæʳx·Ý£¬Ã×ʳy·Ý£¬»¨·ÑΪz£¬ÓÉÌâÒ⽨Á¢¶þÔªÒ»´Î²»µÈʽ×éΪ$\left\{\begin{array}{l}{7x+7y¡Ý5}\\{7x+14y¡Ý6}\\{14x+7y¡Ý6}\\{x¡Ý0}\\{y¡Ý0}\end{array}\right.$£¬Ä¿±êº¯ÊýΪz=28x+21y£¬×÷³ö¿ÉÐÐÓòÊýÐνáºÏ¿ÉµÃ£®

½â´ð ½â£ºÉèÿÌ칺ÂòÃæʳx·Ý£¬Ã×ʳy·Ý£¬»¨·ÑΪz£¬ÓÉÌâÒ⽨Á¢¶þÔªÒ»´Î²»µÈʽ×éΪ$\left\{\begin{array}{l}{7x+7y¡Ý5}\\{7x+14y¡Ý6}\\{14x+7y¡Ý6}\\{x¡Ý0}\\{y¡Ý0}\end{array}\right.$   ¢Ù
Ä¿±êº¯ÊýΪz=28x+21y£¬×÷³ö¶þÔªÒ»´Î²»µÈʽ×é¢ÙËù±íʾµÄƽÃæÇøÓò£¬ÈçͼÒõÓ°²¿·Ö¼´¿ÉÐÐÓò£¬
ÈçͼËùʾ£¬µ±Ö±Ïßz=28x+21y¾­¹ý¿ÉÐÐÓòÉϵĵãMʱ£¬½Ø¾à×îС£¬¼´z×îС£¬
½â·½³Ì×é$\left\{\begin{array}{l}{7x+7y=5}\\{14x+7y=6}\end{array}\right.$£¬µÃMµÄ×ø±êΪ£¨$\frac{1}{7}$£¬$\frac{4}{7}$£©£¬´úÈë¼ÆËã¿ÉµÃzmin=28x+21y=16£¬
¡àÿÌ칺ÂòÃæʳ$\frac{1}{7}$·Ý£¬Ã×ʳ$\frac{4}{7}$·Ý£¬¼ÈÄܹ»Âú×ãÈÕ³£ÒªÇó£¬ÓÖʹ»¨·Ñ×îµÍ£¬×îµÍ³É±¾Îª16Ôª£®

µãÆÀ ±¾Ì⿼²é¼òµ¥ÏßÐԹ滮µÄʵ¼ÊÓ¦Ó㬽¨Á¢ÊýѧģÐͲ¢×¼È·×÷ͼÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£¬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÈçͼËùʾ£¬ÒÔÕý·½ÌåABCD-A1B1C1D1µÄ¶¥µãDΪ×ø±êÔ­µãO£¬Èçͼ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬ÔòÓë$\overrightarrow{{A}_{1}C}$¹²ÏßµÄÏòÁ¿µÄ×ø±ê¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®£¨1£¬$\sqrt{2}$£¬$\sqrt{2}$£©B£®£¨1£¬1£¬$\sqrt{2}$£©C£®£¨$\sqrt{2}$£¬-$\sqrt{2}$£¬$\sqrt{2}$£©D£®£¨$\sqrt{2}$£¬$\sqrt{2}$£¬1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=2sinx-1-mÔÚx¡Ê[$\frac{¦Ð}{3}$£¬$\frac{7¦Ð}{6}$]ÉÏÓÐÁãµã£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ[-2£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®É輯ºÏA={x|8+2x-x2£¾0}£¬¼¯ºÏB={x|x=2n-1£¬n¡ÊN*}£¬ÔòA¡ÉBµÈÓÚ£¨¡¡¡¡£©
A£®{-1£¬1}B£®{-1£¬3}C£®{1£¬3}D£®{3£¬1£¬-1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Éè$\overrightarrow a$£¬$\overrightarrow b$£¬$\overrightarrow e$ΪƽÃæÏòÁ¿£¬Èô$|{\overrightarrow e}|=1$£¬$\overrightarrow a•\overrightarrow e=1$£¬$\overrightarrow b•\overrightarrow e=2$£¬$|{\overrightarrow a-\overrightarrow b}|=2$£¬Ôò$|{\overrightarrow a+\overrightarrow b}|$µÄ×îСֵΪ3£¬$\overrightarrow a•\overrightarrow b$µÄ×îСֵΪ$\frac{5}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®É躯Êýf£¨x£©ÊǶ¨ÓÚÔÚRÉϵÄÆ溯Êý£¬µ±x¡Ý0ʱ£¬f£¨x£©=2x+2x-b£¨bΪ³£Êý£©£¬Ôòf£¨-1£©µÄֵΪ-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Éèp£ºÊµÊýxÂú×ãx2-4ax+3a2£¼0£¬a£¼0£®q£ºÊµÊýxÂú×ãx2-x-6¡Ü0£®ÇÒ?pÊÇ?qµÄ±ØÒª²»³ä·ÖÌõ¼þ£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ1£¬ËÄÃæÌåPABCÖУ¬BC=BP=1£¬AC=AP=$\sqrt{3}$£¬AB=2£¬½«¡÷PABÑØÖ±ÏßAB·­ÕÛÖÁ¡÷P1AB£¬Ê¹µãA£¬P1£¬B£¬CÔÚͬһƽÃæÄÚ£¨Èçͼ2£©£¬µãMΪPCÖе㣮
£¨1£©ÇóÖ¤£ºÖ±ÏßPP1¡ÎƽÃæMAB£»
£¨2£©ÇóÖ¤£ºPC¡ÍAB£»
£¨3£©ÇóÖ±ÏßPAÓëƽÃæP1PCËù³É½ÇµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¡°y=sin£¨2x+¦Õ£©¹ØÓÚyÖá¶Ô³Æ¡±µÄ£¨¡¡¡¡£©Ìõ¼þÊÇ¡°$¦Õ=\frac{¦Ð}{2}$¡±£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªB£®±ØÒª²»³ä·Ö
C£®³äÒªD£®¼È²»³ä·ÖÒ²²»±ØÒª

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸