精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ) 求函数的单调区间;
(Ⅱ) 当时,求函数上的最小值.

  (Ⅰ)详见解析;(Ⅱ)详见解析.

解析试题分析:(Ⅰ)一般来说,判断函数的单调区间,就要考察函数的导函数在此区间上的符号,本题中,由于函数中含有参数,这就可能引起分类讨论;(Ⅱ)求函数在某区间上的最值,一般仍是先考察函数在此区间上的单调性,再求其最值,本题中的参数是引起分类讨论的原因,难度较大,分类时要层次清晰,数形结合的思想的应用能迅速帮助找到分类的标准.
试题解析:(Ⅰ) ,       1分
①当时,,                
故函数增函数,即函数的单调增区间为.       3分
②当时,令,可得
时,;当时,
故函数的单调递增区间为,单调减区间是       6分
(Ⅱ) 由(Ⅰ)知时,函数的单调递增区间为,单调减区间是
①当,即时,函数在区间上是减函数,
的最小值是.               7分
②当,即时,函数在区间上是增函数,
的最小值是.       9分
③当,即时,函数上是增函数,在是减函数.
,∴当时,最小值是
时,最小值为.          11分
综上可知,当时, 函数的最小值是;当时,函数的最小值是     12分
考点:函数的单调性、导数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,函数
(1)当时,写出函数的单调递增区间;
(2)当时,求函数在区间[1,2]上的最小值;
(3)设,函数在(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数在区间上是减函数,求实数的最小值;
(Ⅲ)若存在是自然对数的底数)使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若曲线在点处的切线平行于轴,求的值;
(2)当时,若直线与曲线上有公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的极值;
(2)求函数的单调区间;
(3)是否存在实数,使函数上有唯一的零点,若有,请求出的范围;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,试讨论函数的单调性;
(2)证明:对任意的 ,有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,
(Ⅰ)求函数的单调区间;
(Ⅱ)求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求证:函数上单调递增;
(2)若函数有四个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求的极值;
(Ⅱ)若在区间上是增函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案