精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆C:的离心率为,并且椭圆经过点P(1,),直线l的方程为x=4.

(1)求椭圆的方程;

(2)已知椭圆内一点E(1,0),过点E作一条斜率为k的直线与椭圆交于A,B两点,交直线l于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数,使得k1+k2k3?若存在,求出的值;若不存在,请说明理由.

【答案】(1) .

(2) 存在,使得

【解析】

(1)根据已知得到a,b的方程组,解方程组即得椭圆的方程.(2) 设直线的方程为:,利用韦达定理求出,即得的值.

(1)因为椭圆的离心率为,所以

又椭圆过点,所以

所以,所以椭圆方程为

(2)设直线的方程为:,令,则,所以点

所以

,可得

所以

所以

又因为,所以

所以存在,使得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的最大值和最小值;

2)求实数的取值范围,使在区间上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某野生动物保护区内某种野生动物的数量,调查人员某天逮到这种动物1200只作好标记后放回,经过一星期后,又逮到这种动物1000只,其中作过标记的有100只,按概率的方法估算,保护区内有多少只该种动物.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且,记.

(1)求数列的通项公式;

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为建设美丽乡村,政府欲将一块长12百米,宽5百米的矩形空地ABCD建成生态休闲园,园区内有一景观湖EFG(图中阴影部分).以AB所在直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系xOy(如图所示).景观湖的边界曲线符合函数模型.园区服务中心P在x轴正半轴上,PO=百米.

(1)若在点O和景观湖边界曲线上一点M之间修建一条休闲长廊OM,求OM的最短长度;

(2)若在线段DE上设置一园区出口Q,试确定Q的位置,使通道直线段PQ最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某儿童乐园在六一儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为xy.奖励规则如下:

,则奖励玩具一个;

,则奖励水杯一个;

其余情况奖励饮料一瓶.

假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.

)求小亮获得玩具的概率;

)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间和极值;

(2)若对于任意,都有成立,求实数的取值范围;

(3)若,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知)在区间上的最大值与最小值之和为,其中.

1)直接写出的解析式和单调性;

2)若恒成立,求实数的取值范围;

3)设,若,使得对,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的参数方程为为参数),圆与圆外切于原点,且两圆圆心的距离,以坐标原点为极点,轴正半轴为极轴建立极坐标系.

(1)求圆和圆的极坐标方程;

(2)过点的直线与圆异于点的交点分别为点和点,与圆异于点的交点分别为点和点,且.求四边形面积的最大值.

查看答案和解析>>

同步练习册答案