精英家教网 > 高中数学 > 题目详情

【题目】2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间(单位:小时)并绘制如图所示的频率分布直方图.

(1)求这200名学生每周阅读时间的样本平均数和中位数的值精确到0.01);

(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为的学生中抽取9名参加座谈会.

(i)你认为9个名额应该怎么分配?并说明理由;

(ii)座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的列联表,并判断是否有的把握认为学生阅读时间不足(每周阅读时间不足8.5小时)与“是否理工类专业”有关?

阅读时间不足8.5小时

阅读时间超过8.5小时

理工类专业

40

60

非理工类专业

附:).

临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

<>

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)平均数9,中位数;(2)(i)按照进行名额分配;理由见详解;

(ii)有.

【解析】

(1)根据平均数,中位数的定义进行求解即可

(2)完成列联表,计算的观测值,结合独立性检验的性质进行判断即可.

(1)该组数据的平均数

因为,所以中位数

,解得

(2)(i)每周阅读时间为的学生中抽取3名,每周阅读时间为的学生中抽取6名.

理由:每周阅读时间为与每周阅读时间为是差异明显的两层,为保持样本结构与总体结构的一致性,提高样本的代表性,宜采用分层抽样的方法抽取样本;因为两者频率分别为0.1,0.2,所以按照进行名额分配.

(ii)由频率分布直方图可知,阅读时间不足8.5小时的学生共有人,超过8.5小时的共有人.

于是列联表为:

阅读时间不足8.5小时

阅读时间超过8.5小时

理工类专业

40

60

非理工类专业

26

74

的观测值

所以有的把握认为学生阅读时间不足与“是否理工类专业”有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1,圆心在.

1)若圆心也在直线上,过点作圆的切线,求切线的方程;

2)若圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:过点和点.

Ⅰ)求椭圆的方程;

Ⅱ)设直线与椭圆相交于不同的两点, ,是否存在实数,使得?若存在,求出实数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求曲线处的切线方程;

(2)函数在区间上有零点,求的值;

(3)若不等式对任意正实数恒成立,求正整数的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数),当时,只有一个实根;当时,只有3个相异实根,现给出下列4个命题:

有一个相同的实根;

有一个相同的实根;

的任一实根大于的任一实根;

的任一实根小于的任一实根.

其中真命题的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】七巧板是一种古老的中国传统智力玩具,是由七块板组成的.而这七块板可拼成许多图形,例如:三角形、不规则多边形、各种人物、动物、建筑物等,清陆以湉《冷庐杂识》写道:近又有七巧图,其式五,其数七,其变化之式多至千余.在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.若用七巧板拼成一只雄鸡,在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线与曲线两交点所在直线的极坐标方程;

(2)若直线的极坐标方程为,直线轴的交点为,与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中,底面为矩形, .侧面底面.

(1)证明:

(2)设与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案