精英家教网 > 高中数学 > 题目详情
5.函数f(x)=$\sqrt{\frac{1+x}{4-x}}$的定义域为集合A,函数g(x)=3x-a(x≤1)的值域为集合B
(1)求集合A,B;
(2)若全集U=R,集合A,B满足(∁UA)∩B=B,求实数a的取值范围.

分析 (1)求出函数f(x)的定义域确定出A,求出g(x)的值域确定出B即可;
(2)根据A补集与B的交集为B,得到B为A补集的子集,求出a的范围即可.

解答 解:(1)由f(x)=$\sqrt{\frac{1+x}{4-x}}$,得到$\frac{1+x}{4-x}$≥0,即(x+1)(x-4)≤0,且x-4≠0,
解得:-1≤x<4,即A=[-1,4),
由函数g(x)=3x-a(x≤1),得到-a<g(x)≤3-a,即B=(-a,3-a],
∴∁UA=(-∞,-1)∪[4,+∞),
∵(∁UA)∩B=B,
∴B⊆∁UA,即3-a<-1或-a≥4,
解得:a≤-4或a>4.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函g(x)=2x的图象与函y=f(x)的图象关于直y=x对称,a=g(0.2),b=f(1.5),c=f(0.2),a,b,c的大小关系是(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,函数f(x)的定义域为[-1,2],f(x)的图象为折线AB,BC.
(Ⅰ)求f(x)的解析式;
(Ⅱ)解不等式f(x)≥x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知4a=9b=12,则a,b满足下列关系式(  )
A.$\frac{1}{a}$+$\frac{1}{b}$=1B.$\frac{1}{a}$+$\frac{1}{2b}$=1C.$\frac{2}{a}$+$\frac{1}{b}$=1D.$\frac{1}{2a}$+$\frac{1}{b}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在如图所示的韦恩图中,A,B是非空集合,定义A*B表示阴影部分集合,若集合A={x|y=$\sqrt{3x-{x}^{2}}$,x,y∈R},B={y|y=4x,x>0},则A*B=[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的前n项和为Sn,且5S1,2S2,S3成等差数列.
(1)求{an}的公比q;
(2)当a1-a3=3时,证明:数列{Sn-1}也是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在数列{an}中,已知a1=$\frac{1}{2}$,an+1=1-$\frac{1}{{a}_{n}}$,n∈N*,则a30=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,为测得对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东方向是15°方向走30m到位置D,测得∠BDC=30°,则塔高是(  )
A.15mB.5$\sqrt{6}$mC.10$\sqrt{6}$mD.15$\sqrt{6}$m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)是偶函数,当0≤x≤1时,f(x)=x2,且f(x+1)=f(1-x),方程f(x)-lgx=0的根的个数是(  )
A.2B.7C.9D.10

查看答案和解析>>

同步练习册答案