精英家教网 > 高中数学 > 题目详情

【题目】蔬菜批发市场销售某种蔬菜,在一个销售周期内,每售出1吨该蔬菜获利500元,未售出的蔬菜低价处理,每吨亏损100元.统计该蔬菜以往100个销售周期的市场需求量,绘制下图所示频率分布直方图.

(Ⅰ)求的值,并求100个销售周期的平均市场需求量(以各组的区间中点值代表该组的数值);

(Ⅱ)若经销商在下个销售周期购进了190吨该蔬菜,设为该销售周期的利润(单位:元),为该销售周期的市场需求量(单位:吨).求的函数解析式,并估计销售的利润不少于86000元的概率.

【答案】(1) ,181.4;(2) ;0.66.

【解析】

1)根据频率和为1,求得,利用频率直方图中平均数的计算公式,求得平均值,即可得到结论.

1)根据题意求得的函数关系式,当时,求得,当,得到,即可求解销售的利润不少于的概率.

(Ⅰ)由频率分布直方图中各个小长方形的面积和为1,

可得,解得

(Ⅱ)由题意可知,当

所以的函数解析式为.

设销售的利润不少于86000元的事件记为.

,所以

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)设曲线交于两点,点,若成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为1的正方形,MDABCDNBABCD.且MDNB1.则下列结论中:

MCAN

DB∥平面AMN

③平面CMN⊥平面AMN

④平面DCM∥平面ABN

所有假命题的个数是(  

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示.分别表示甲、乙两班各自5名学生学分的标准差,则_______.(填“”“<”或“=”)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线恰有一个公共点.

(Ⅰ)求曲线的极坐标方程;

(Ⅱ)已知曲线上两点满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线恰有一个公共点.

(Ⅰ)求曲线的极坐标方程;

(Ⅱ)已知曲线上两点满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,《宋人扑枣图轴》是作于宋朝的中国古画,现收藏于中国台北故宫博物院.该作品简介:院角的枣树结实累累,小孩群来攀扯,枝桠不停晃动,粒粒枣子摇落满地,有的牵起衣角,有的捧着盘子拾取,又玩又吃,一片兴高采烈之情,跃然于绢素之上.甲、乙、丙、丁四人想根据该图编排一个舞蹈,舞蹈中他们要模仿该图中小孩扑枣的爬、扶、捡、顶四个动作,四人每人模仿一个动作.若他们采用抽签的方式来决定谁模仿哪个动作,则甲不模仿“爬”且乙不模仿“扶”的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:和点,P是圆上一点,线段BP的垂直平分线交CPM点,则M点的轨迹方程为______;若直线lM点的轨迹相交,且相交弦的中点为,则直线l的方程是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解小学生的体能情况,现抽取某小学六年级100名学生进行跳绳测试,观察记录孩子们三分钟内的跳绳个数,将所得的数据整理后画出频率分布直方图,跳绳个数的数值落在区间内的频率之比为.(计算结果保留小数点后面3位)

(Ⅰ)求这些学生跳绳个数的数值落在区间内的频率;

(Ⅱ)用分层抽样的方法在区间内抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2个学生,求这2个学生跳绳个数的数值都在区间内的概率.

查看答案和解析>>

同步练习册答案