精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足:,且(n=1,2,...).记
集合
(1)(Ⅰ)若,写出集合M的所有元素;
(2)(Ⅱ)若集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;
(3)(Ⅲ)求集合M的元素个数的最大值.

【答案】
(1)

{6,12,24}


(2)

证明:(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设 ak 是3的倍数,由已知 ,可用用数学归纳法证明对任意 n ≥ k , an 是3的倍数,当 k = 1 时,则M中的所有元素都是3的倍数,如果 k > 1 时,因为 ak = 2ak-1 或 2ak-1 -36 ,所以 2ak-1 是3的倍数,于是 ak-1 是3的倍数,类似可得, ak -2 . . . . . . a1 都是3的倍数,从而对任意 n ≥ 1 , an 是3的倍数,因此M的所有元素都是3的倍数.


(3)

8


【解析】(Ⅰ)由已知可知:,因此
(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设是3的倍数,由已知,可用用数学归纳法证明对任意是3的倍数,当时,则M中的所有元素都是3的倍数,如果时,因为,所以是3的倍数,于是是3的倍数,类似可得,都是3的倍数,从而对任意是3的倍数,因此M的所有元素都是3的倍数.
(III )由于M中的元素都不超过36,由,易得,类似可得,其次M中的元素个数最多除了前面两个数外,都是4的倍数,因为第二哥数必定为偶数,由的定义可知,第三个数后面的数必定是4的倍数,另外,M中的数除以9的余数,由定义可知,除以9的余数一样,
(1)若中有3的倍数,由(2)知:所有都是3的倍数,所以都是3的倍数,所以除以9的余数为3,6,3,6,......,或6,3,6,3......,或0,0,0......,而除以9余3且是4的倍数只有12,除以9余6且是4的倍数只有24,除以9余0且是4的倍数只有36,则M中的数从第三项起最多2项,加上前面两项,最多4项。
(2)若中没有3的倍数,则都不是3的倍数,对于除以9的余数只能是1,4,7,2,5,8中的一个,从起,除以9的余数是1,2,4,8,7,5,1,2,4,8,......,不断的6项循环(可能从2,4,8,7或5开始),而除以9的余数是1,2,4,8,5且是4的倍数(不大于36),只有28,20,4,8,16,32,所以M中的项加上前两项最多的8项,则时,,项数为8,所以集合M的元素个数的最大值为8.
【考点精析】根据题目的已知条件,利用数学归纳法的步骤的相关知识可以得到问题的答案,需要掌握

  1. :A.n=1(或成立,推的基B.n=k成立; C.n=k+1也成立,完成两步,就可以断定任何自然数(n>=,)结论都成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015·湖北)某厂用鲜牛奶在某台设备上生产两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为

(Ⅰ)求Z的分布列和均值;该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(Ⅱ) 若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(2015·重庆)如题(20)图,三棱锥中,平面平面,,点D、E在线段上,且,在线段上,且


(1)证明:平面.
(2)若四棱锥P-DFBC的体积为7,求线段BC的长。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上海自贸区某种进口产品的关税税率为,其市场价格(单位:千元,与市场供应量(单位:万件)之间近似满足关系式:

1)请将表示为关于的函数,并根据下列条件计算:若市场价格为7千元,则市场供应量约为2万件.试确定的值;

2)当时,经调查,市场需求量(单位:万件)与市场价格近似满足关系式:.为保证市场供应量不低于市场需求量,试求市场价格的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】
设函数
①若,则的最小值为
②若恰有2个零点,则实数的取值范围是 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖,求下列问题:(1)求顾客抽奖1次能获奖的概率(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为 X ,求 X 的分布列和数学期望.
(1)(1)求顾客抽奖1次能获奖的概率
(2)(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为 , 求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是 ,乙每轮猜对的概率是 ;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:
(1)“星队”至少猜对3个成语的概率;
(2)“星队”两轮得分之和为X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中 中,已知曲线 经过点 ,其参数方程为 为参数),以原点 为极点, 轴的正半轴为极轴建立极坐标系.
(1)求曲线 的极坐标方程;
(2)若直线 于点 ,且 ,求证: 为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,函数恒有意义,求实数的取值范围;

(2)是否存在这样的实数,使得函数fx)在区间上为减函数,并且最大值为?如果存在,试求出的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案